Answer:
Carboxylic acids produce hydrogen bonds amongst themselves and possess lower vapor pressure. They generally possess a sour odor. When an acid and a base react with each other to produce salt and water and comprises the combination of hydrogen and hydroxide ions, the reaction is termed the neutralization reaction. Thus, when carboxylic acid reacts with base the reaction is termed neutralization.
On the other hand, esters are known for their pleasant fragrances. They do not produce hydrogen bonds amongst themselves and possess higher vapor pressure. A hydration reaction in which free hydroxide dissociates the ester bonds between the glycerol and fatty acids of a triglyceride, leading to the formation of free fatty acids and glycerol is termed saponification.
Thus, the given blanks can be filled with carboxylic acid, carboxylic acid, esters, esters, esters, and carboxylic acid.
Answer:
for the how to get a carrot to float you would need to make a hole in it and make it hollow
Explanation:
Answer:
0.38
Explanation:
Molar mass of thiophene= 84g/mol
Mass of thiophene = 37g
Number of moles= 37/84= 0.44 moles
Molar mass of heptane= 100 g/mol
Mass of heptane = 72g
Number of moles = 72/100= 0.72 moles
Total number of moles= 0.44 + 0.72= 1.16 moles
mole fraction of thiophene = 0.44/1.16= 0.38
Answer:
Explanation:
Well, obviously a molecule with polar bonds can be polar in itself. It's like saying I am an atheltic person who can just reach the basketball rim with my head and also I can dunk.
But if the question is how can a molecule that in non-polar have polar bonds, well, its because the polar bonds' dipole cancels each other out. It's like a tight rope. If a person pulls in one direction, it intuitively, the rope would go in that direction. However, if a person pulls in the other direction with the same amount of force, the rope stays still. This is the same case. Although molecules can have different electronegativities, the pull of electrons in one direction is cancelled out by a pull in the opposite direction, making the net dipole 0.
This is common for main VSERP shaped molecules like linear, trigonal planar, tetrahedral, trigonal bipyramidal, and octahedral.