Answer:
f = pl / (l + p)
Explanation:
1/f = 1/p + 1/l
Find the common denominator of the right hand side.
1/f = l/(pl) + p/(pl)
Add:
1/f = (l + p) / (pl)
Take the inverse of both sides:
f = pl / (l + p)
Answer: number of bacteria
Explanation:
A easier way. I like to remember it is that x axis = independent and yaxis = dependent variable, but if that doesn’t help think about this
Why would the number of bacteria effect the amount of time. It doesn’t make sense because time goes on forever and nothing can change about it but time can change the number of bacteria because if you had a timer of 30 seconds and the bacteria is for example 10 and if you had a timer of one minute then the number of bacteria change because of time, if you flip it, it doesn’t make sense
Answer:
Explanation:
For parallel inductors ,



For series combination
Total inductance
= 16.67 + 20
= 36.67 mH .
reactance of total inductance at 300 kHz
= ω
where ω is angular frequency
= 2πf
= 2 x 3.14 x 300 x 10³ x 36.67 x 10⁻³
= 69.1 x 10³ ohm
Total rms current = Vrms / reactance
= 60 / 69.1 x 10³ A
= .87 x 10⁻³ A
= .87 mA
Electromagnetic or magnetic induction is the production of an electromotive force across an electrical conductor in a changing magnetic field. Michael Faraday is generally credited with the discovery of induction in 1831, and James Clerk Maxwell mathematically described it as Faraday's law of induction.
Answer:

Explanation:
The time taken by the light to travel a given distance is defined as:

Here c is obviously the speed of light. Now we convert the average distance form Venus to Earth to meters:

Finally, we calculate the minutes taken by the light to travel from Venus to Earth:
