The kinetic energy of the mass at the instant it passes back through its equilibrium position is about 1.20 J

<h3>Further explanation</h3>
Let's recall Elastic Potential Energy formula as follows:

where:
<em>Ep = elastic potential energy ( J )</em>
<em>k = spring constant ( N/m )</em>
<em>x = spring extension ( compression ) ( m )</em>
Let us now tackle the problem!

<u>Given:</u>
mass of object = m = 1.25 kg
initial extension = x = 0.0275 m
final extension = x' = 0.0735 - 0.0275 = 0.0460 m
<u>Asked:</u>
kinetic energy = Ek = ?
<u>Solution:</u>
<em>Firstly , we will calculate the spring constant by using </em><em>Hooke's Law</em><em> as follows:</em>






<em>Next , we will use </em><em>Conservation of Energy</em><em> formula to solve this problem:</em>







<h3>Learn more</h3>

<h3>Answer details</h3>
Grade: High School
Subject: Physics
Chapter: Elasticity
Answer:
simple, Volt =change in potential energy/Charge
the unit of energy is newton meter (Force*distance)
the unit of charge is coloumb
So, Volt/meter=newton* meter/coloumb*meter
=newton/coloumb (hence proved)
This unit is the potential drop per unit of length in a conductive wire with uniform resistance
Answer:
p= 1.50289×10⁷ N/m²
Explanation:
Given
HA = (564 m)................(River Elevation)
HB = (2096 m).............(Village Elevation)
Area = A =(π/4){Diameter}² = (π/4){0.15 m}² = 0.017671 m²
ρ = (1 gram/cm³) = (1000 kg/m³)........(Water Density)
p(pressure)=?
Solution
p=PA - PB
p= ρ*g*HB - ρ*g*HA
p= (ρ*g)*(HB - HA)
p= (1000×9.81 )×{2096 - 564}
p= 1.50289×10⁷ N/m²
Answer:
For two waves of equal amplitude interfering constructively, the resulting amplitude is twice as large as the amplitude of an individual wave. For 100 waves of the same amplitude interfering constructively, the resulting amplitude is 100 times larger than the amplitude of an individual wave.