Answer:
Explanation:
If the volume of a sample of gas is reduced at constant temperature, the average velocity of the molecules increases, the average force of an individual collision increases, and the average number of collisions with the wall, per unit area, per second increases.
As volume is reduced, the gas molecules come closer together, which increases the number of collisions between them and their collisions with the container walls. Also, since the distance traveled by each molecule between successive collision decreases, the molecule velocity doesn't decrease much within collisions as a result of which, the average velocity is higher compared to when the gas is stored in a larger volume. Finally, due to constant collisions, the direction of molecule travel changes rapidly owing to which the acceleration of molecules increases.
To verify the identity, we can make use of the basic trigonometric identities:
cot θ = cos θ / sin θ
sec θ = 1 / cos <span>θ
csc </span>θ = 1 / sin θ<span>
Using these identities:
</span>cot θ ∙ sec θ = (cos θ / sin θ ) (<span> 1 / cos </span><span>θ)
</span>
We can cancel out cos <span>θ, leaving us with
</span>cot θ ∙ sec θ = 1 / sin θ
cot θ ∙ sec θ = = csc <span>θ</span>
Answer: To focus on a near object – the lens becomes thicker, this allows the light rays to refract (bend) more strongly. To focus on a distant object – the lens is pulled thin, this allows the light rays to refract slightly.
Explanation:
Answer:
An inclined plane makes work easier by breaking an upward or downward movement into smaller increments. Examples of inclined planes include slides, ramps, and hills. A screw is like an inclined plane wrapped around a cylinder. A screw turns a small rotational force into a larger forward driving force.
Explanation:
hope this helps branlist plz im trying to rank up
Answer:
2960 N
Explanation:
Convert rev/min to rad/s:
150 rev/min × (2π rad/rev) × (1 min / 60 s) = 50π rad/s
Sum of forces in the centripetal direction:
∑F = ma
T = m v² / r
T = m ω² r
T = (0.2 kg) (50π rad/s)² (0.6 m)
T = 2960 N