Answer:
<h2> 27m/s</h2>
Explanation:
Given data
initital velocity u=15m/s
deceleration a=3m/s^2
time t= 4 seconds
final velocity v= ?
Applying the expression
v=u+at------1
substituting our data into the expression we have
v=15+3*4
v=15+12
v=27m/s
The velocity after 4 seconds is 27m/s
Answer:
The specific heat is 3.47222 J/kg°C.
Explanation:
Given that,
Temperature = 13°C
Temperature = 37°C
Mass = 60 Kg
Energy = 5000 J
We need to calculate the specific heat
Using formula of energy


Put the value into the formula


Hence, The specific heat is 3.47222 J/kg°C.
Answer:
The minimum time to get the car under max. speed limit of 79 km/h is 2.11 seconds.
Explanation:

isolating "t" from this equation:

Where:
a=
(negative because is decelerating)

First we must convert velocity from km/h to m/s to be consistent with units.


So;

Answer:
option (b)
Explanation:
for a telescope, the object is placed very far from the objective lens so the focal length of objective is large and the eye piece is of short focal length.
So, long focal length objective and short focal length eyepiece.
Option (b) is correct.
Answer:
(a) 333.77 J
(b) 237.85 J
(c) 4763.77 J
(d) 4667.85 J
Explanation:
Temperature of source, TH = 314 K
Temperature of A, Tc = 292 K
Temperature of B, Tc' = 298 K
heat taken out, Qc = 4430 J
Let the heat deposited outside is QH and QH' by A and B respectively.

Now

(a) Work done for A
W = QH - QC = 4763.77 - 4430 = 333.77 J
(b) Work done for B
W' = QH' - Qc = 4667.85 - 4430 = 237.85 J
(c) QH = 4763.77 J
(d) QH' = 4667.85 J