Answer:
θ = 22.2
Explanation:
This is a diffraction exercise
a sin θ = m λ
The extension of the third zero is requested (m = 3)
They indicate the wavelength λ = 630 nm = 630 10⁻⁹ m and the width of the slit a = 5 10⁻⁶ m
sin θ = m λ / a
sin θ = 3 630 10⁻⁹ / 5 10⁻⁶
sin θ = 3.78 10⁻¹ = 0.378
θ = sin⁻¹ 0.378
to better see the result let's find the angle in radians
θ = 0.3876 rad
let's reduce to degrees
θ = 0.3876 rad (180º /π rad)
θ = 22.2º
<u>Given</u><u>:</u>
- An object has a forward force = 100N
- An object has a reverse force = 25N
<u>To</u><u> </u><u>find</u><u> </u><u>out</u><u>:</u>
What is the resultant force?
<u>Solution</u><u>:</u>
Resultant Force = Forward force + Reserve force
= 100 N + ( - 25 N )
= 75 N
<u>Halfway</u><u> between the like poles of two magnets, because the field lines bend away and do not enter this area.</u>
How does a magnetic field diagram show where the field is strongest?
- The magnetic field lines do not ever cross.
- The lines include arrowheads to indicate the direction of the force exerted by a magnetic north pole.
- The closer the lines are to the poles, the stronger the magnetic field (thus the magnetic field from a bar magnet is highest closest to the poles).
Where is magnetic field the strongest and weakest on a magnet?
- The bar magnet's magnetic field is strongest at its core and weakest between its two poles.
- The magnetic field lines are densest immediately outside the bar magnet and least dense in the core.
Which two locations on the magnet would have the greatest attractive forces?
- Inside the magnet itself, the field lines run from the south pole to the north pole.
- The magnetic field is strongest in areas of greatest density of magnetic field lines, or areas of the greatest magnetic flux density.
Learn more about magnetic field
brainly.com/question/11514007
#SPJ4
Answer:
805m
Explanation:
Speed = displacement/time
Speed = 23m/s
Time = 35s
Displacement = speed × time
= 23 × 35
= 805m