(a) 3675 N
Assuming that the acceleration of the rocket is in the horizontal direction, we can use Newton's second law to solve this part:

where
is the horizontal component of the force
m is the mass of the passenger
is the horizontal component of the acceleration
Here we have
m = 75.0 kg

Substituting,

(b) 3748 N, 11.3 degrees above horizontal
In this part, we also have to take into account the forces acting along the vertical direction. In fact, the seat exerts a reaction force (R) which is equal in magnitude and opposite in direction to the weight of the passenger:

where we used
as acceleration of gravity.
So, this is the vertical component of the force exerted by the seat on the passenger:

and therefore the magnitude of the net force is

And the direction is given by

Answer:
150J
Explanation:
work output/work input=100%
so just make work output the subject
Answer:
There are five signs of a chemical change:
Color Change.
Production of an odor.
Change of Temperature.
Evolution of a gas (formation of bubbles)
Precipitate (formation of a solid)
Explanation:
I just went ahead and gave you the five signs of chemical change hoped it helped
To solve this problem it is necessary to apply the concepts related to Dopler's Law. Dopler describes the change in frequency of a wave in relation to that of an observer who is in motion relative to the Source of the Wave.
It can be described as

c = Propagation speed of waves in the medium
= Speed of the receiver relative to the medium
= Speed of the source relative to the medium
Frequency emited by the source
The sign depends on whether the receiver or the source approach or move away from each other.
Our values are given by,
Velocity of car
velocity of motor
Velocity of sound
Frequency emited by the source
Replacing we have that



Therefore the frequency that hear the motorcyclist is 601.7Hz