To find the horizontal distance multiple the horizontal velocity by the time. Since there is no given time it must be calculated using kinematic equation.
Y=Yo+Voyt+1/2at^2
0=.55+0+1/2(-9.8)t^2
-.55=-4.9t^2
sqrt(.55/4.9)=t
t=0.335 seconds
Horizontal distance
=0.335s*1.2m/s
=0.402 meters
Answer:
a) During the reaction time, the car travels 21 m
b) After applying the brake, the car travels 48 m before coming to stop
Explanation:
The equation for the position of a straight movement with variable speed is as follows:
x = x0 + v0 t + 1/2 a t²
where
x: position at time t
v0: initial speed
a: acceleration
t: time
When the speed is constant (as before applying the brake), the equation would be:
x = x0 + v t
a)Before applying the brake, the car travels at constant speed. In 0.80 s the car will travel:
x = 0m + 26 m/s * 0.80 s = <u>21 m </u>
b) After applying the brake, the car has an acceleration of -7.0 m/s². Using the equation for velocity, we can calculate how much time it takes the car to stop (v = 0):
v = v0 + a* t
0 = 26 m/s + (-7.0 m/s²) * t
-26 m/s / - 7.0 m/s² = t
t = 3.7 s
With this time, we can calculate how far the car traveled during the deacceleration.
x = x0 +v0 t + 1/2 a t²
x = 0m + 26 m/s * 3.7 s - 1/2 * 7.0m/s² * (3.7 s)² = <u>48 m</u>
The fast lap is irrelevant to the question, because it didn't happen
until after the 9 laps that you're interested in.
To be perfectly technical about it, we don't actually have enough
information to answer the question. You told us her average speed
for 10 laps, but we don't know anything about how her speed may
have changed during the whole 10 laps. For all we know, maybe
she took a nap first, and then got up and drove 10 laps at the speed
of 125 metres per second. That would produce the average speed
of 12.5 metres per second and we would never know it Why not ?
That's only 280 miles per hour. Bikes can do that, can't they ?
IF we can assume that Amy maintained a totally steady pace through
the entire 10 laps, then we could say that her average for 9 laps was
also 12.5 metres per second.
Answer:
The extension of a material or a spring is its increase in length when pulled. Hooke’s Law says that the extension of an elastic object is directly proportional to the force applied to it. In other words:
Explanation: