To solve this problem you must apply the proccedure shown below:
1. You have that the ellipse given as a vertical major axis (a=13), therefore, taking the ellipse with its center at the origin, you have the following equation:
(y^2/a^2)+(x^2/b^2)=1
2. You have the distance from the center of the ellipse to the focus:
c=12, therefore, you can calculate the value of b, the minor radius:
c^2=a^2-b^2
b=√(13^3-12^2)
b=5
3. Therefore, the equation is:
a^2=169
b^2=25
(y^2/169)+(x^2/25)=1
The answer is: (y^2/169)+(x^2/25)=1
Answer:
c
Step-by-step explanation:
am not sure but I think its C am not shure
Answer:
Step-by-step explanation:
B
Work shown above! x = 7
To solve use the supplementary angle next to the unknown angle to find an expression for that unknown angle and use that with the expressions inside the triangle to set equal to 180 and solve for x.
hope this helps c:
Answer:
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years
Step-by-step explanation:
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
A certain type of storage battery lasts, on average, 3.0 years with a standard deviation of 0.5 year
This means that 
What is the probability that a given battery will last between 2.3 and 3.6 years?
This is the p-value of Z when X = 3.6 subtracted by the p-value of Z when X = 2.3. So
X = 3.6



has a p-value of 0.8849
X = 2.3



has a p-value of 0.0808
0.8849 - 0.0808 = 0.8041
0.8041 = 80.41% probability that a given battery will last between 2.3 and 3.6 years