The correct answer to the question is : C) The horizontal momentum and the vertical momentum are both conserved.
EXPLANATION :
Before coming into any conclusion, first we have to understand the law of conservation of momentum.
As per the law of conservation of momentum, the total linear as well as angular momentum of an isolated system is always conserved . The law of conservation of energy is a universal fact.
Hence, during any type of collision, the total momentum is always conserved.
Hence, the total horizontal momentum as well as total vertical momentum are always conserved during both elastic as well as inelastic collision.
Answer:
they will move away from each other
Answer:
Hello the options to your question is missing attached below are the missing options
- Electrical forces are symmetrical, The electric repulsion of the Balloons is equal because electric forces between two objects are always symmetrical
- The electric forces are equal in this case because both balloons had the same amount of electric charge
Answer :
Electrical forces are symmetrical, The electric repulsion of the Balloons is equal because electric forces between two objects are always symmetrical
Explanation:
The Balloons have the same amount of force exerted on them, because Electrical forces are symmetrical, The electric repulsion of the Balloons is equal because electric forces between two objects are always symmetrical, therefore the two Balloons are deflected to the same angle
Explanation:
Calculate position vectors in a multidimensional displacement problem. Solve for the displacement in two or three dimensions. Calculate the velocity vector
Consider 20 deg.C. as room temperature.
From tables,
Silver has a resistivity of 1.6*10^-8 ohm-m at 20 deg.C, and it increases by 0.0038 ohm-m per deg.K increase.
Therefore if the temperature rise above 20 deg.C is T, then silver will have resistivity of
1.6*10^-8(1 + 0.0038T) ohm-m
At room temperature, the resistivity of tungsten (from tables) is 5.6*10^-8.
The resistivity of silver will be 4 times that of tungsten (at room temperature) when
1.6*10^-8(1 + 0.0038T) = 4*5.6*10^-8
1 + 0.0038T = 14
T = 13/.0038 = 3421 deg.K approx
Answer: 20 + 3421 = 3441 °C