Imagine a ball is moving on the following horizontal line.
. . . . . . . . . . . . . . . . . . . O. . . . . . . . . . . . . . . . . .
Take right as positive. O is the starting point of the ball. Denote the ball by o.
. . . . . . . . . . . . . . . . . . . O. . . . . . . ... . . o . . . . . .
Assume the ball is moving to the right. It has positive displacement since it is on the right of O, and positive velocity since its positive displacement is increasing.
.ñ
. . . . . . . . . . . . . . . . . . . O. . . . o . . . . . . . . . . . . .
Now the ball is returning to O. It still has positive displacement since its current position is still on the right of O. However, its velocity is negative since its positive displacement is decreasing and the direction of the velocity vector points left, which is the negative side.
By now you should be able to come up with a scenario where the ball has negative displacement and positive velocity.
You can observe the same phenomenon in daily life. Say, as a stretched spring bounces to its starting position, if we let the returning direction be positive, the string has negative displacement since it is on the negative direction, but has positive velocity. Bungee jump can also used to illustrate the phenomenon.
11,000 m = 11 km
11 km/s over 380,000km
380,000 / 11 = 34545.4 seconds
34545.4 / 60 = 575.7 minutes
Answer:
(a)20.65g
(b)0.19m
Explanation:
(a) The total mass would be it's mass per length multiplied by the total lenght
0.355(50 + 23*0.355) = 20.65 g
(b) The center of mass would be at point c where the mass on the left and on the right of c is the same
Hence the mass on the left side would be half of its total mass which is 20.65/2 = 10.32 g



They will say hamsters are related to birds lol