Answer:
From smallest ratio to the largest ratio:
Coasting Universe - Critical Universe - Recollapsing Universe(From left to right)
Explanation:
The coasting universe is one that expands at a constant rate given by the Hubble constant throughout all of cosmic time. It has a ratio of actual density to critical density that is less than 1
The critical universe is one that is at balance with no expansion .I.e. the actual density and the critical density are equal, which makes the ratio of actual density to critical density to be equal to 1
Recollapsing Universe: The expansion of the universe reverses in the future and the universe eventually recollapses. The recollapsing universe has the ratio of the actual density to the critical density to be greater than 1
There's no way to tell. Without seeing a diagram of the circuit,
I'll need to know much more about it than you've told me.
I don't know anything about the components or power supply
that are in the circuit, and I don't know where point ' f ' is in it.
Right now, even with the copious volume of all the available
information, no answer to your question is possible.
No because it will contain the same amount of mass, just in different forms.
Answer:
t< 75 nm
Explanation:
A soap bubble is a thin film where when the beam enters the film it has a 180º phase change due to the refractive index and the wavelength changes between
λ = λ₀ / n
In the case of constructive interference in the curve of the spherical film it is
2 nt = (m + ½) λ₀
Where t is the thickness of the film and n the refractive index that does not indicate that we use that of water n = 1.33, m is an integer. The thickness of the film for the first interference (m = 0) is
t = λ₀ / 4 n
A thickness less than this gives destructive interference.
Let's look for the thickness for the visible spectrum
Violet light λ₀ = 400 nm = 400 10⁻⁹ m
t₁ = 400 10⁻⁹ / 4 1.33
t₁ = 75.2 10-9 m
Red light λ₀ = 700 nm = 700 10⁻⁹ m
t₂ = 700 10⁻⁹ / 4 1.33
t₂ = 131.6 10⁻⁹ m
Therefore, for all wavelengths to have destructive interference, the thickness must be less than 75 10⁻⁹ m = 75 nm
b) a film like eta is very thin, it is achieved when gravity thins the pomp, but any movement or burst of air breaks it,