Answer:
60
Step-by-step explanation:
The most amount of tickets sold is 60 tickets, as it shows on the graph.
Answer:

Step-by-step explanation:
![\frac{15}{\sqrt{31} - 4}\\\\=\frac{15}{\sqrt{31} - 4} \times \frac{\sqrt{31} + 4}{\sqrt{31}+ 4} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ rationalizing \ the \ denominator \ ]\\\\=\frac{15( \sqrt{31} + 4 )}{(\sqrt{31})^2 - (4)^2} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ [ \ (a-b)(a+b) = a^2 - b^2 \ ]\\\\=\frac{15 ( \sqrt{31} + 4)}{31 - 16}\\\\=\frac{15 (\sqrt{31} + 4)}{15}\\\\= \sqrt{31} + 4](https://tex.z-dn.net/?f=%5Cfrac%7B15%7D%7B%5Csqrt%7B31%7D%20-%204%7D%5C%5C%5C%5C%3D%5Cfrac%7B15%7D%7B%5Csqrt%7B31%7D%20-%204%7D%20%5Ctimes%20%5Cfrac%7B%5Csqrt%7B31%7D%20%2B%204%7D%7B%5Csqrt%7B31%7D%2B%204%7D%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%20%5B%20%20%5C%20rationalizing%20%5C%20the%20%5C%20denominator%20%5C%20%5D%5C%5C%5C%5C%3D%5Cfrac%7B15%28%20%5Csqrt%7B31%7D%20%2B%204%20%29%7D%7B%28%5Csqrt%7B31%7D%29%5E2%20-%20%284%29%5E2%7D%20%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%20%5C%20%5C%20%5C%20%5B%20%5C%20%28a-b%29%28a%2Bb%29%20%3D%20a%5E2%20-%20b%5E2%20%5C%20%5D%5C%5C%5C%5C%3D%5Cfrac%7B15%20%28%20%5Csqrt%7B31%7D%20%2B%204%29%7D%7B31%20-%2016%7D%5C%5C%5C%5C%3D%5Cfrac%7B15%20%28%5Csqrt%7B31%7D%20%2B%204%29%7D%7B15%7D%5C%5C%5C%5C%3D%20%5Csqrt%7B31%7D%20%2B%204)
This is a quadratic equation because it has degree 2.
As known as a parabola
<h2>Solving Equations</h2>
To solve linear equations, we must perform inverse operations on both sides of the equal sign to <em>cancel values out</em>.
- If something is being added to x, subtract it from both sides.
- If something is being subtracted from x, add it on both sides.
- Same with multiplication and division. If x is being divided, multiply. If x is being multiplied, divide.
We perform inverse operations to<em> combine like terms</em>. This means to get x to one side and everything else on the other.
<h2>Solving the Questions</h2><h3>Question 1</h3>

Because 7 is being added to x, subtract it from both sides:

Because x is being multiplied by 5, divide both sides by 5:

Therefore.
.
<h3>Question 2</h3>

Here, we can group all the x values on the left side of the equation. Subtract 5x from both sides:

To isolate x, subtract 4 from both sides:

Divide both sides by 2:

Therefore,
.