1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
8

A bubble of air is rising up through the ocean. When it is at a depth of 20.0 m below the surface, where the temperature is 5.00

°C, its volume is 0.80 cm3. What is the bubble's volume (in cm3) just before it hits the ocean surface, where the temperature is 20.0°C? Assume the average density of sea water is 1,025 kg/m3. Hint: Use Pascal's Principle (textbook Eq. 14.4) to determine the pressure at the depth of 20.0 m below the surface.
Physics
1 answer:
kotegsom [21]3 years ago
3 0

Answer:

the volume is 0.253 cm³

Explanation:

The pressure underwater is related with the pressure in the surface through Pascal's law:

P(h)= Po + ρgh

where Po= pressure at a depth h under the surface (we assume = 1atm=101325 Pa) , ρ= density of water ,g= gravity , h= depth at h meters)

replacing values

P(h)= Po + ρgh = 101325 Pa + 1025 Kg/m³ * 9.8 m/s² * 20 m = 302225 Pa

Also assuming that the bubble behaves as an ideal gas

PV=nRT

where

P= absolute pressure, V= gas volume ,n= number of moles of gas, R= ideal gas constant , T= absolute temperature

therefore assuming that the mass of the bubble is the same ( it does not absorb other bubbles, divides into smaller ones or allow significant diffusion over its surface) we have

at the surface) PoVo=nRTo

at the depth h) PV=nRT

dividing both equations

(P/Po)(V/Vo)=(T/To)

or

V=Vo*(Po/P)(T/To) = 0.80 cm³ * (101325 Pa/302225 Pa)*(277K/293K) = 0.253 cm³

V = 0.253 cm³

You might be interested in
The electric field must be zero inside a conductor in electrostatic equilibrium, but not inside an insulator. It turns out that
pav-90 [236]

Answer:

The permittivity of rubber is  \epsilon  = 8.703 *10^{-11}

Explanation:

From the question we are told that

     The  magnitude of the point charge is  q_1 =  70 \ nC  =  70 *10^{-9} \  C

      The diameter of the rubber shell is  d = 32 \ cm  =  0.32 \ m

       The Electric field inside the rubber shell is  E =  2500 \ N/ C

The radius of the rubber is  mathematically evaluated as

              r =  \frac{d}{2} =  \frac{0.32}{2}  =  0.16 \ m

Generally the electric field for a point  is in an insulator(rubber) is mathematically represented as

         E =  \frac{Q}{ \epsilon }  *  \frac{1}{4 *  \pi r^2}

Where \epsilon is the permittivity of rubber

    =>     E  *  \epsilon  *  4 * \pi *  r^2 =  Q

   =>      \epsilon  =  \frac{Q}{E *  4 *  \pi *  r^2}

substituting values

            \epsilon  =  \frac{70 *10^{-9}}{2500 *  4 *  3.142 *  (0.16)^2}

            \epsilon  = 8.703 *10^{-11}

7 0
3 years ago
Biotic factors and abiotic factor temperature
ddd [48]
Biotic is the living factors while abiotic is nonliving such as a rock
5 0
2 years ago
Two particles are separated by 0.38 m and have charges of -6.25 x 10-°C
Studentka2010 [4]

Answer:

did u get it?

Explanation:

frfr

5 0
3 years ago
Read 2 more answers
If the distance of a galaxy is 2,000 Mpc, how many years back into the past are we looking when we observe this galaxy
ruslelena [56]

The age of the galaxy when we look back is 13.97 billion years.

The given parameters:

  • <em>distance of the galaxy, x = 2,000 Mpc</em>

According Hubble's law the age of the universe is calculated as follows;

v = H₀x

where;

H₀ = 70 km/s/Mpc

T = \frac{x}{V} \\\\T = \frac{x}{xH_0} \\\\T = \frac{1}{H_0} \\\\T = \frac{1}{70 \ km/s/Mpc} \\\\T = \frac{1 \ sec}{70 \times 3.24 \times 10^{-20} } \\\\T = 4.41 \times 10^{17} \ sec\\\\T = \frac{4.41 \times 10^{17} \ sec\  \times \ years}{3600 \ s \ \times\  24\ h\  \times \ 365.25 \ days} \\\\T = 1.397  \times 10^{10} \ years\\\\T = 13.97 \ billion \ years

Thus, the age of the galaxy when we look back is 13.97 billion years.

Learn more about Hubble's law here: brainly.com/question/19819028

8 0
2 years ago
Select the statement that correctly describes how light travels? light can travel in a vacuum, and its speed is constant even if
Irina18 [472]
<span>Light can travel in a vacuum, and ... strange as it may seem ...
its speed is always the same, even if the light source is moving. </span>
3 0
3 years ago
Read 2 more answers
Other questions:
  • A current of 0.001 A can be felt by the human body. 0.005 A can produce a pain response. 0.015 A can cause a loss of muscle cont
    9·1 answer
  • A hockey puck on a frozen pond is given an initial speed of 20.0 m/s. If the puck always remains on the ice and slides 115 m bef
    10·1 answer
  • The energy an object has as a result of it being in motion is called? What kind of energy?
    7·2 answers
  • An electron is trapped in an infinite square-well potential of width 0.6 nm. If the electron is initially in the n = 4 state, wh
    6·1 answer
  • How do the molecules of cold water differ from the molecules of hot water?
    14·2 answers
  • What is the current in a circuit that has a resistance of 75Ω and a voltage drop of 120V across the cell? (I'll give brainliest!
    5·1 answer
  • Pls help me this is being timed.
    8·1 answer
  • Shadow and eclipses result from​
    8·2 answers
  • How did potential energy get stored in the spring/pom pom system?
    9·1 answer
  • A roller coaster, traveling with an initial speed of 21 m/s, decelerates uniformly at -3.5
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!