Answer:
3. velocity is zero.
Explanation:
The velocity of a simple harmonic motion is given by
Here, <em>ω</em> is the angular velocity, <em>A</em> is the amplitude (or maximum displacement from the equilibrium point) and <em>x</em> is the displacement at any time.
At maximum displacement, <em>x </em>=<em> A</em>.<em> </em>Then
Therefore, at maximum displacement, velocity is 0.
Practically, this can be observed in a simple pendulum. As it approaches the maximum displacement, its velocity reduces. It becomes zero at this point and then reverses as the pendulum changes course. Then the velocity begins to increase. It becomes maximum at the equilibrium point but once past that, the velocity begins to reduce as it approaches the other amplitude.
For acceleration,
It follows that at maximum displacement, the acceleration is a maximum. The negative sign indicates that it is in an opposite direction to the displacement. Both kinetic energy () and linear momentum () are proportional to velocity; they are therefore both zero at the maximum displacement.
. The velocity of a mass attached to a spring is given by v = (1.5 cm/s) sin(ωt + π/2), ..... Which of the following is the motion of objects moving in two dimensions
Answer: When an ambulance passes with its siren blaring, you hear the pitch of the siren change: as it approaches, the siren’s pitch sounds higher than when it is moving away from you. This change is a common physical demonstration of the Doppler effect.
Explanation:
B4 the tackle:
<span>The linebacker's momentum = 115 x 8.5 = 977.5 kg m/s north </span>
<span>and the halfback's momentum = 89 x 6.7 = 596.3 kg m/s east </span>
<span>After the tackle they move together with a momentum equal to the vector sum of their separate momentums b4 the tackle </span>
<span>The vector triangle is right angled: </span>
<span>magnitude of final momentum = √(977.5² + 596.3²) = 1145.034 kg m/s </span>
<span>so (115 + 89)v(f) = 1145.034 ←←[b/c p = mv] </span>
<span>v(f) = 5.6 m/s (to 2 sig figs) </span>
<span>direction of v(f) is the same as the direction of the final momentum </span>
<span>so direction of v(f) = arctan (596.3 / 977.5) = N 31° E (to 2 sig figs) </span>
<span>so the velocity of the two players after the tackle is 5.6 m/s in the direction N 31° E </span>
<span>btw ... The direction can be given heaps of different ways ... N 31° E is probably the easiest way to express it when using the vector triangle to find it</span>
Fnet = (mass) (acceleration)
= 11 kg x 3.7m/s^2
= 41 N