1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lbvjy [14]
3 years ago
10

A 0.0780 kg lemming runs off a 5.36 m high cliff at 4.84 m/s. what is its potential energy (PE) when it is 2.00 m above the grou

nd PLEASE HELP
Physics
1 answer:
Colt1911 [192]3 years ago
7 0

The potential energy of the lemming is 1.53 J

Explanation:

The potential energy (PE) of an object is the energy possessed by the object due to its position in the Earth's gravitational field, and it is given by:

PE=mgh

where:

m is the mass of the object

g=9.8 m/s^2 is the acceleration of gravity

h is the height of the object relative to the ground

In this problem:

m = 0.0780 kg is the mass of the lemming

We want to find the potential energy when the height is

h = 2.00 m

Therefore, we find:

PE=(0.0780)(9.8)(2.00)=1.53 J

Learn more about potential energy:

brainly.com/question/1198647

brainly.com/question/10770261

#LearnwithBrainly

You might be interested in
In the reaction 2Ca + O2 → 2CaO for every 2 Ca you will need how much O2?
Serjik [45]

Answer:

1

Explanation: that is the ratio

5 0
2 years ago
Please help answer question​
nika2105 [10]

Answer:

C = 1.01

Explanation:

Given that,

Mass, m = 75 kg

The terminal velocity of the mass, v_t=60\ m/s

Area of cross section, A=0.33\ m^2

We need to find the drag coefficient. At terminal velocity, the weight is balanced by the drag on the object. So,

R = W

or

\dfrac{1}{2}\rho CAv_t^2=mg

Where

\rho is the density of air = 1.225 kg/m³

C is drag coefficient

So,

C=\dfrac{2mg}{\rho Av_t^2}\\\\C=\dfrac{2\times 75\times 9.8}{1.225\times 0.33\times (60)^2}\\\\C=1.01

So, the drag coefficient is 1.01.

4 0
2 years ago
A wave has a wavelength of 9 mm and a frequency of 6 hertz. What is its speed?
Marrrta [24]
Speed = (frequency)x(wavelength).

Frequency = 6 Hz
Wavelength = 9mm = 0.009m.

Speed = (6 Hz) x (0.009m) = 0.054 m/s   or   54 mm/sec.
5 0
3 years ago
A pendulum has 844 J of potential energy at the highest point of its swing. How much kinetic energy will it have at the bottom o
Stolb23 [73]
844J.
Assuming that there were no encumbrances during it's foreswing and it reached it's full potential at apogee.
8 0
3 years ago
-. A 2kg cart moving to the right at 5m/s collides with an 8kg cart at rest. As a
bulgar [2K]

Answer:

<em>The velocity of the carts after the event is 1 m/s</em>

Explanation:

<u>Law Of Conservation Of Linear Momentum </u>

The total momentum of a system of bodies is conserved unless an external force is applied to it. The formula for the momentum of a body with mass m and speed v is  

P=mv.  

If we have a system of bodies, then the total momentum is the sum of the individual momentums:

P=m_1v_1+m_2v_2+...+m_nv_n

If a collision occurs and the velocities change to v', the final momentum is:

P'=m_1v'_1+m_2v'_2+...+m_nv'_n

Since the total momentum is conserved, then:

P = P'

In a system of two masses, the equation simplifies to:

m_1v_1+m_2v_2=m_1v'_1+m_2v'_2

If both masses stick together after the collision at a common speed v', then:

m_1v_1+m_2v_2=(m_1+m_2)v'

The common velocity after this situation is:

\displaystyle v'=\frac{m_1v_1+m_2v_2}{m_1+m_2}

The m1=2 kg cart is moving to the right at v1=5 m/s. It collides with an m2= 8 kg cart at rest (v2=0). Knowing they stick together after the collision, the common speed is:

\displaystyle v'=\frac{2*5+8*0}{2+8}=\frac{10}{10}=1

The velocity of the carts after the event is 1 m/s

3 0
2 years ago
Other questions:
  • under what circumstances can the average velocity of a moving object be zero when its average speed is 50 km/hr ?
    14·1 answer
  • Sodium and potassium are soft silvery metals. They are both solids at room temperature and react strongly when combined with wat
    12·2 answers
  • An investigator places a sample 1.0 cm from a wire carrying a large current; the strength of the magnetic field has a particular
    9·1 answer
  • A truck is traveling 20m/s accelerates 3 m/s^2 for 4 seconds how far did it travel while it was accelerating. Using guess method
    12·1 answer
  • How does altitude, distance from the ocean, amount of sunlight, distance from the equator, and ocean currents affect polar clima
    12·1 answer
  • A car travels for an hour at a speed of 20 km/r, the next two hours at a speed of 65 km/r and the final hour at a speed of 85 km
    13·1 answer
  • An electron experiences a force of magnitude F when it is 5 cm from a very long, charged wire with linear charge density, lambda
    14·1 answer
  • Which do you think the correct answer was wrong<br> Help plis:(
    11·1 answer
  • A proton traveling due west in a region that contains only a magnetic field experiences a vertically upward force (away from the
    13·1 answer
  • The Sun's energy comes from which nuclear reaction?​
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!