F = G mM / r^2, where
<span>F = gravitational force between the earth and the moon, </span>
<span>G = Universal gravitational constant = 6.67 x 10^(-11) Nm^2/(kg)^2, </span>
<span>m = mass of the moon = 7.36 × 10^(22) kg </span>
<span>M = mass of the earth = 5.9742 × 10^(24) and </span>
<span>r = distance between the earth and the moon = 384,402 km </span>
<span>F </span>
<span>= 6.67 x 10^(-11) * (7.36 × 10^(22) * 5.9742 × 10^(24) / (384,402 )^2 </span>
<span>= 1.985 x 10^(26) N</span>
In order to find the force (F), you would have to use the formula for it:
F=ma
where m is mass and a is acceleration.
In the problem, the mass is 2.85kg and the acceleration is 4.9m/s^2.
Therefore,
F=2.85kg(4.9m/s^2)
F=13.965kg(m/s^2)
Since N=kg(m/s^2)
F=13.965N
And because the problem requires that we use only 2 significant figures,
F=13N
Therefore, the student must exert 13N of force.
it includes an objects speed and direction
Answer:
The net gravitational force on the mass is 
Explanation:
We have by Newton's law of gravity the force of attraction between masses 

Applying vales we get
Force of attraction between 135 kg mass and 38 kg mass is

Force of attraction between 435 kg mass and 38 kg mass is

Thus the net force on mass 38.0 kg is 
Answer:
Dear Kaleb
Answer to your query is provided below
Acceleration of the vehicle is 12m/s^2
Explanation:
Explanation for the same is attached in image