Square roots and squares cancel eachother. therefore the problem is simply:
2.35 + -4.27= -1.92
Answer:
The smallest whole number length is 12
Step-by-step explanation:
The sum of any two sides of any triangle must be greater than the length of the third side.
In this case, the two smallest sides of the triangle must be greater than the third side to satisfy the statement above.
Let "x" = the length of the third side.
Our two smaller sides are "x" and "4", and their sum must be greater than 15.
x + 4 > 15
x > 15 - 4
x > 11
Answer:
(a) 0.28347
(b) 0.36909
(c) 0.0039
(d) 0.9806
Step-by-step explanation:
Given information:
n=12
p = 20% = 0.2
q = 1-p = 1-0.2 = 0.8
Binomial formula:

(a) Exactly two will be drunken drivers.



Therefore, the probability that exactly two will be drunken drivers is 0.28347.
(b)Three or four will be drunken drivers.


Using binomial we get



Therefore, the probability that three or four will be drunken drivers is 0.3691.
(c)
At least 7 will be drunken drivers.

![P(x\leq 7)=1-[P(x=0)+P(x=1)+P(x=2)+P(x=3)+P(x=4)+P(x=5)+P(x=6)]](https://tex.z-dn.net/?f=P%28x%5Cleq%207%29%3D1-%5BP%28x%3D0%29%2BP%28x%3D1%29%2BP%28x%3D2%29%2BP%28x%3D3%29%2BP%28x%3D4%29%2BP%28x%3D5%29%2BP%28x%3D6%29%5D)
![P(x\leq 7)=1-[0.06872+0.20616+0.28347+0.23622+0.13288+0.05315+0.0155]](https://tex.z-dn.net/?f=P%28x%5Cleq%207%29%3D1-%5B0.06872%2B0.20616%2B0.28347%2B0.23622%2B0.13288%2B0.05315%2B0.0155%5D)
![P(x\leq 7)=1-[0.9961]](https://tex.z-dn.net/?f=P%28x%5Cleq%207%29%3D1-%5B0.9961%5D)

Therefore, the probability of at least 7 will be drunken drivers is 0.0039.
(d) At most 5 will be drunken drivers.



Therefore, the probability of at most 5 will be drunken drivers is 0.9806.