1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RUDIKE [14]
3 years ago
9

(8c7p26) During spring semester at MIT, residents of the parallel buildings of the East Campus dorms battle one another with lar

ge catapults that are made with surgical hose mounted on a window frame. A balloon filled with dyed water is placed in a pouch attached to the hose, which is then stretched through the width of the room. Assume that the stretching of the hose obeys Hooke's law and has a spring constant of 102 N/m. If the hose is stretched by 4.8 m and then released, how much work does the force from the hose do on the balloon in the pouch by the time the hose reaches its relaxed length
Physics
1 answer:
likoan [24]3 years ago
7 0

Answer: 1175 J

Explanation:

Hooke's Law states that "the strain in a solid is proportional to the applied stress within the elastic limit of that solid."

Given

Spring constant, k = 102 N/m

Extension of the hose, x = 4.8 m

from the question, x(f) = 0 and x(i) = maximum elongation = 4.8 m

Work done =

W = 1/2 k [x(i)² - x(f)²]

Since x(f) = 0, then

W = 1/2 k x(i)²

W = 1/2 * 102 * 4.8²

W = 1/2 * 102 * 23.04

W = 1/2 * 2350.08

W = 1175.04

W = 1175 J

Therefore, the hose does a work of exactly 1175 J on the balloon

You might be interested in
A plane comes in for a landing at a velocity of 80 meters per second west. As it touches down, it decelerates at a constant rate
azamat

Answer:

Answer D : about 1067 meters

Explanation:

There are two steps to this problem:

1) First find the time it takes the plane to stop using the equation for the acceleration:

a=\frac{Vf-Vi}{t}

Where Vf is the final velocity of the plane (in our case: zero )

Vi is the initial velocity of the plane (in our case: 80 m/s)

a is the acceleration (in our case -3 m/s^2 - notice negative value because the velocity is decreasing)

a=\frac{Vf-Vi}{t}\\-3=\frac{0-80}{t}\\t=\frac{-80}{-3} = \frac{80}{3}

with units corresponding to seconds given the quantities involved in the calculation.

2) Second knowing the time it took the plane to stop, now use that time in the equation for the distance traveled under accelerated motion:

Xf-Xi=Vi*t+\frac{1}{2} a t^{2} \\Xf-Xi= 80 (\frac{80}{3}) +\frac{1}{2} (-3) (\frac{80}{3}) ^{2}=1066.666666...

Where the answer results in units of meters given the quantities used in the calculation.

We round this to 1067 meters

7 0
4 years ago
About how many centimeters will make an inch?<br> 02<br> O 10<br> 100<br> 200
Tresset [83]
There is approximately 2.54 cm that equals to 1 inch. So your closet answer would be the first choice. :)
7 0
3 years ago
Read 2 more answers
A 40-W lightbulb is 1.7 m from a screen. What is the intensity of light incident on the screen? Assume that a lightbulb emits ra
Sonja [21]

Answer:

Intensity, I=1.101\ W/m^2

Explanation:

Power of the light bulb, P  = 40 W

Distance from screen, r = 1.7 m

Let I is the intensity of light incident on the screen. The power acting per unit area is called the intensity of the light. Its formula is given by :

I=\dfrac{P}{A}

I=\dfrac{P}{4\pi r^2}

I=\dfrac{40\ W}{4\pi (1.7\ m)^2}

I=1.101\ W/m^2

So, the intensity of light is 1.101\ W/m^2.

6 0
4 years ago
Which of the following statements are true about the international system of measurement?
anygoal [31]
The International System Units or the SI units is  scientific method of expressing the magnitudes or quantities of important natural phenomena. There are seven base units in the system, from which other units are derived. This system was formerly called the meter-kilogram-second (MKS) system.
8 0
3 years ago
41. Planet Ayanna has a radius of 6.2 X 10%m and orbits the star named Dayli in 98 days. A new neighboring planet Clayton J-21 h
romanna [79]

Answer:

138.3 days

Explanation:

Given that a Planet Ayanna has a radius of 6.2 X 10%m and orbits the star named Dayli in 98 days. A new neighboring planet Clayton J-21 has been discovered and has a radius of 7.8 X 10 meters.

The period of time for Clayton J-21 to orbit Dayli can be calculated by using Kepler law.

T^2 is proportional to r^3

That is,

T^2/r^3 = constant

98^2 / 62^3 = T^2 / 78^3

Make T^2 the subject of formula.

T^2 = 98^2 / 62^3 × 78^3

T^2 = 19123.2

T = sqrt ( 19123.2 )

T = 138.2867 days

Therefore, the period of time for Clayton J-21 to orbit Dayli is 138.3 days approximately.

4 0
3 years ago
Other questions:
  • Protons are located Select one:
    15·2 answers
  • 9. A sailor pulls a boat along a dock using a rope at an angle of 60.0° with the
    9·1 answer
  • You are heating two chunks of metal of the same size and shape. One is made of lead and is heated
    7·1 answer
  • Required information
    5·1 answer
  • Airbags will deploy no matter from what angle your car is hit.
    7·2 answers
  • Plants and trees grow nearly everywhere. this is one of the advantages of what energy?
    7·2 answers
  • A 55 year old woman is awakened by an excruciating pain that radiates from her right abdomen to her flank on the same side
    9·1 answer
  • The surface of an incline is coated with an experimental substance that is intended to reduce the frictional force between a blo
    6·2 answers
  • FOR BRAINLIEST!<br><br> Someone draw me a Rube Goldberg Machine.
    7·1 answer
  • Write the working mechanism of Mercury Barometer and explain its parts in short.​
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!