D. velocity
Velocity depends on speed and direction
Answer:
The magnitude of the magnetic field B at the center of the loop is 5.0272 x 10⁻⁴ T.
Explanation:
Given;
Radius of circular loop, R = 3.00 cm = 0.03 m
Current in the loop, I = 12.0 A
Magnetic field at the center of circular loop is given as;
B = μ₀I / 2R
Where;
μ₀ is constant = 4π x 10⁻⁷ T.m/A
R is the radius of the circular loop
I is the current in the loop
Substitute the given values in the above equation and calculate the magnitude of the magnetic field;
B = (4π x 10⁻⁷ x 12)/ 0.03
B = 5.0272 x 10⁻⁴ T
Therefore, the magnitude of the magnetic field B at the center of the loop is 5.0272 x 10⁻⁴ T.
Answer:
GRAVITATIONAL FORCE
Explanation:
We may have noticed that a body thrown upward in air falls back down again after attaining a particular height. The object was able to fall down back due to the effect of gravity acting on it. If there are no force of gravity acting on the body, the body will not fall back but rather disappears into the thin air.
A coin tossed upward in the air which falls back down when released is therefore under the influence of gravity i.e GRAVITATIONAL FORCE while it moves upward after it is released
Hello! Assuming that the only force acting on the mass is 30N...
Fnet = 30N
Fnet = ma (mass x acceleration)
ma = 30N
a = 30N / m
a = 30N / 7kg
a = 4.2857 m/s^2
a = 4 m/s^2
I hope this helps!
Answer:
Explanation:
Let the amplitude of individual wave be I and resultant amplitude be 1.703 I . Let the phase difference be Ф in terms of degree
From the formula of resultant vector
(1.703I)² = I² + I² + 2 I² cosФ
2.9 I² = 2I² + 2 I² cosФ
.9I² = 2 I² cosФ
cosФ = .9 / 2
= .45
Ф = 63.25 .