<span>The Ksp
of Calcium Hydroxide by Titration of HCl with saturated Ca(OH)<span>2</span></span>
Answer:
64.0 g/mol.
Explanation:
- Thomas Graham found that, at a constant temperature and pressure the rates of effusion of various gases are inversely proportional to the square root of their masses.
<em>∨ ∝ 1/√M.</em>
where, ∨ is the rate of diffusion of the gas.
M is the molar mass of the gas.
<em>∨₁/∨₂ = √(M₂/M₁)</em>
∨₁ is the rate of effusion of the unknown gas.
∨₂ is the rate of effusion of He gas.
M₁ is the molar mass of the unknown gas.
M₂ is the molar mass of He gas (M₂ = 4.0 g/mol).
<em>∨₁/∨₂ = 0.25.</em>
∵ ∨₁/∨₂ = √(M₂/M₁)
∴ (0.25) =√(4.0 g/mol)/(M₁)
<u><em>By squaring the both sides:</em></u>
∴ (0.25)² = (4.0 g/mol)/(M₁)
∴ M₁ = (4.0 g/mol)/(0.25)² = 64.0 g/mol.
Answer:
The "simple" hurdle that must be overcome to turn seawater into freshwater is to remove the dissolved salt in seawater. That may seem as easy as just boiling some seawater in a pan, capturing the steam and condensing it back into water (distillation).
Answer:
it is the only one going up
Explanation:
First things first carbon is quite common element here in Earth. But it is not all, right? Otherwise we would be built from other, more common elements. The thing is in carbon reactiveness. Also energy needed to create carbon chemical compounds isnt that big when compared to etc nitrogen. It can bind up to 4 different elements (atoms). Thanks to this can givesingle, both and triple bindings! Carbon can give away electrons or take them making his degree of oxidation consequently from -IV to +IV. All this vareity leads to vareity of bigger elements that will be created from carbon later- carbohydrates, proteins etc. As life needs vareity to adapt to different situations and climax only carbon therefore can provide this.