Answer:
2420 J
Explanation:
From the question given above, the following data were obtained:
Force (F) = 22.9 N
Angle (θ) = 35°
Distance (d) = 129 m
Workdone (Wd) =?
The work done can be obtained by using the following formula:
Wd = Fd × Cos θ
Wd = 22.9 × 129 × Cos 35
Wd = 22.9 × 129 × 0.8192
Wd ≈ 2420 J
Thus, the workdone is 2420 J.
Answer:
The energy lost by the atoms is given off as an electromagnetic wave. ... even if it's not very intense, will always cause electrons to be emitted.
Explanation:
Answer:

Explanation:
Given that,
The car traveled a total of 1,200 meters during this test.
We need to find the average speed of the car. The average speed of the car is given by total distance covered divided by the time taken. So,

But putting the value of t we can find the average speed of the car.
Answer:
Graph for object that is not moving: B
Graph for object that is speeding up: D
Explanation:
A.) In order to represent that an object is not moving, you must either show that there is no velocity (0 m/s) or show a position over time graph that is a horizontal line.
Because the position is the same as time increases, the graph shows that there the object must be at rest, as there is no change in position due to velocity. (Velocity must be 0m/s)
B.) In order to represent an object is speeding up, the position time graph must either be a positive exponential function, the velocity time graph must be a positive, linear line, or the acceleration over time graph must be a positive, horizontal line.
Why is D the correct answer? Because if an object is speeding up, you know that the value of its speed (velocity) is increasing at some rate. And since speeding up refers to positive change, the function of velocity over time graph must be a positive function.