5,625 x 10 ⁻¹⁰ is <span>the force between a 3 Coulomb charge and a 2 Coulomb charge separated by a distance of 5 meters.</span>
Answer:
3.71 m/s in the negative direction
Explanation:
From collisions in momentum, we can establish the formula required here which is;
m1•u1 + m2•v2 = m1•v1 + m2•v2
Now, we are given;
m1 = 1.5 kg
m2 = 14 kg
u1 = 11 m/s
v1 = -1 m/s (negative due to the negative direction it is approaching)
u2 = -5 m/s (negative due to the negative direction it is moving)
Thus;
(1.5 × 11) + (14 × -5) = (1.5 × -1) + (14 × v2)
This gives;
16.5 - 70 = -1.5 + 14v2
Rearranging, we have;
16.5 + 1.5 - 70 = 14v2
-52 = 14v2
v2 = - 52/14
v2 = 3.71 m/s in the negative direction
Solutions are basically a release from a problem. This is more than helpful.
Answer:
he fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true
Explanation:
Let's pose the solution of this problem, to be able to analyze the firm affirmations.
When the person is falling, the weight acts on them all the time, initially the rope has no force, but at the moment it begins to lash it exerts a force towards the top that is proportional to the lengthening of the rope.
The equation for this part is
Fe - W = m a
k x - mg = m a
As the axis of rotation is located at the top where they jump, there is a torque.
What is it
Fe y - W y = I α
angular and linear acceleration are related
a = α r
Fe y - W y = I a / r
In the fall movement we see that both the force is different from zero, and the torque is different from zero.
When analyzing the statements the d is true