A) The formula for kinetic energy is E = 1/2 mv^2, so the energy of the ball is 1/2 * 2 * 10^2 = 100J.
b) Energy is always conserved, and so if no energy is lost to resistive forces then all 100J of kinetic energy came from its potential energy at the top of the track.
c) The formula for potential energy is E = mgh, which we can rearrange for h = E/mg. We know the energy, the mass and the strength of gravity, so we can find h = 100 / (2*9.81) = 5.10m.
Explanation:
Gauss Law relates the distribution of electric charge to the resulting electric field.
Applying Gauss's Law,
EA = Q / ε₀
Where:
E is the magnitude of the electric field,
A is the cross-sectional area of the conducting sphere,
Q is the positive charge
ε₀ is the permittivity
We be considering cases for the specified regions.
<u>Case 1</u>: When r < R
The electric field is zero, since the enclosed charge is equal to zero
E(r) = 0
<u>Case 2</u>: When R < r < 2R
The enclosed charge equals to Q, then the electric field equals;
E(4πr²) = Q / ε₀
E = Q / 4πε₀r²
E = KQ /r²
Constant K = 1 / 4πε₀ = 9.0 × 10⁹ Nm²/C²
<u>Case 3</u>: When r > 2R
The enclosed charge equals to Q, then the electric field equals;
E(4πr²) = 2Q / ε₀
E = 2Q / 4πε₀r²
E = 2KQ /r²
A flow of electric charge from one place to another is electric 'current'.
Also:
When you post a multiple-choice question,
please post the choices along with it.
Thank you.
Answer:
D) They most likely died from not wearing a seatbelt.
Explanation:
Their death was caused by a "motor vehicle" (that's what MV stands for in this case). The most logical answer would be D.