Part (a): Velocity of the snowball
By conservation of momentu;
m1v1 + m2v2 = m3v3,
Where, m1 = mass of snowball, v1, velocity of snowball, m2 = mass of the hat, v2 = velocity of the hat, m3 = mass of snowball and the hat, v3 = velocity of snowball and the hut.
v2 = 0, and therefore,
85*v1 + 0 = 220*8 => v1 = 220*8/85 = 20.71 m/s
Part (b): Horizontal range
x = v3*t
But,
y = vy -1/2gt^2, but y = -1.5 m (moving down), vy =0 (no vertical velocity), g = 9.81 m/s^2
Substituting;
-1.5 = 0 - 1/2*9.81*t^2
1.5 = 4.905*t^2
t = Sqrt (1.5/4.905) = 0.553 seconds
Then,
x = 8*0.553 = 4.424 m
The relationship between the number of visible spectral lines are identical for atoms .However they have unique wavelengths.
Option B
<u>
Explanation:</u>
A spectrum is a range of frequencies or a range of wavelengths. The photon energy of the emitted photon is equal to the difference between two states. For every atom there are quite many electron transitions and each has a energy difference.
This difference in wavelength causes spectrum .As each element emission spectrum is unique because each atom has different energy and causes uniqueness in the emission spectrum . Hence, due to the difference in energy it emits different wavelengths.
T= 3.34
Vi= 0
A= 9.81
D= ?
d=Vit+1/2at^2
d= 1/2(9.81)(3.34)2
d= 54.7 or 55 meters tall
Answer:
The electron’s velocity is 0.9999 c m/s.
Explanation:
Given that,
Rest mass energy of muon = 105.7 MeV
We know the rest mass of electron = 0.511 Mev
We need to calculate the value of γ
Using formula of energy


Put the value into the formula


We need to calculate the electron’s velocity
Using formula of velocity




Put the value into the formula



Hence, The electron’s velocity is 0.9999 c m/s.