Answer:
vf²=vi²+2a∆x
Explanation:
The third equation of motion gives the final velocity of an object under uniform acceleration given the distance traveled and an initial velocity: v 2 = v 0 2 + 2 a d . v^2=v_0^2+2ad. v2=v02+2ad. The graph of the motion of the object.
Answer:
Change in velocity: 88 m/s
Average velocity: 50 m/s
initial velocity: 5.9 m/s
Final velocity: 94 m/s
Initial momentum: 3.6 kg m/s
Final momentum: 58 kg m/s
Explanation:
Acceleration = change in velocity / time
9.8 m/s² = Δv / 9.0 s
Δv = 88 m/s
Work = change in energy
Fd = ΔE
(6.0 N) d = 2700 J
d = 450 m
Average velocity = distance / time
v_avg = 450 m / 9.0 s
v_avg = 50 m/s
v − v₀ = 88 m/s
½ (v + v₀) = 50 m/s
Solving the system of equations:
v + v₀ = 100 m/s
2v = 188 m/s
v = 94 m/s
v₀ = 5.9 m/s
Use Newton's second law to find the mass:
F = ma
6.0 N = m (9.8 m/s²)
m = 0.61 kg
Find the momentums:
p₀ = (0.61 kg) (5.9 m/s) = 3.6 kg m/s
p = (0.61 kg) (94 m/s) = 58 kg m/s
Answer:12.8°c
Explanation:
specific heat capacity of copper(c)=0.39J*g°c
Mass(m)=20grams
Quantity of heat(Q)=100joules
Temperature rise(@)=?
@=Q/(mxc)
@=100/(20x0.39)
@=100/7.8
@=12.8°c
Prototype
Chemistry
Technology
Troubleshooting
Hypothesis?
Observing
Variable
Hypothesis?
Engineer
System
Answer: mass for Pyrex glass 84.21g
mass for sand 61.6g
mass for ethanol 41.32g
mass for water 62.07g
Explanation
By definition specific heat is the amount of heat required to change the temperature of 1 kg mas by 1°C
Q=mcΔT is formula for specific heat
Q is heat transfer
m is mass
ΔT is change in temperature
c is specific heat
c of Pyrex glass= 0.75 j/g°C
c of sand = 0.84 j/g°C
c of ethanol= 2.42 j/g°C
c of water = 4.18 j/g°C
now we will make M(mass) the subject, so equation becomes
m=Q/cΔT
for
pyrex glass T<em>f=</em>55.4°C
m=1920/(55.4-25)*0.75
m=84.21g {after cutting J(joules) and °C we are left with g(grams)}
for
sand T<em>f</em>=62.1°C
m=1920/(62.1-25)*0.84
m=61.6g {after cutting J(joules) and °C we are left with g(grams)}
for
ethanol T<em>f</em>=44.2°C
m=1920/(44.2-25)*2.42
m=41.32g {after cutting J(joules) and °C we are left with g(grams)}
for
water T<em>f=</em>32.4°
m=1920/(32.4-25)*4.18
m=62.07g {after cutting J(joules) and °C we are left with g(grams)}
i hope you understand the solution, thank you.