Answer You need to consider that the gravity on earth is 9.8 m/s/s. This means any object you let go on the earths surface will gain 9.8 m/s of speed every second. You need to apply a force on the object in the opposite direction to avoid this acceleration. If you are pushing something up at a constant speed, you are just resisting earths acceleration. The more massive and object is, the greater force is needed to accelerate it. The equation is Force = mass*acceleration. So for a 2kg object in a 9.8 m/s/s gravity you need 2kg*9.8m/s/s = 19.6 Newtons to counteract gravity. Work or energy = force * distance. So to push with 19.6 N over a distance of 2 meters = 19.6 N*2 m = 39.2 Joules of energy. There is an equation that puts together those two equations I just used and it is E = mgh
The amount of Energy to lift an object is (mass) * (acceleration due to gravity) * (height)
:Hence, the Work done to life the mass of 2 kg to a height of 10 m is 196 J. Hope it helps❤️❤️❤️
Explanation:
Answer:
Collisions are basically two types: Elastic, and inelastic collision. Elastic collision is defined as the colliding objects return quickly without undergoing any heat generation. Inelastic collision is defined as the where heat is generated, and colliding objects are distorted.
In elastic collision, the total kinetic energy, momentum are conserved, and there is no wasting of energy occurs. Swinging balls is the good example of elastic collision. In inelastic collision, the energy is not conserved it changes from one form to another for example thermal energy or sound energy. Automobile collision is good example, of inelastic collision.
I’m assuming we’re suppose to get some kind of graph but, Instantaneous speed is the speed that is happening right now. Like driving a car at 15k/h. The instantaneous speed of the car 15k/h. On the graph, at 5s. Wherever the line is, will tell you what the speed is.
Answer:
Explanation:
Force, F = - mg j
r = - 7x i + y j
Torque is defined as the product f force and the perpendicular distance.
It is also defined as the cross product of force vector and the displacement vector.


[tex]\overrightarrow{\tau }= 7 m g x k
Here, we observe that the torque is independent of y coordinate.