1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
puteri [66]
3 years ago
7

Help me with this please!

Physics
1 answer:
alexgriva [62]3 years ago
3 0
Prototype
Chemistry
Technology
Troubleshooting
Hypothesis?
Observing
Variable
Hypothesis?
Engineer
System
You might be interested in
A uniform disk with mass 35.2 kg and radius 0.200 m is pivoted at its center about a horizontal, frictionless axle that is stati
Sergio [31]

Answer:

a) v = 1.01 m/s

b) a = 5.6 m/s²

Explanation:

a)

  • If the disk is initially at rest, and it is applied a constant force tangential to the rim, we can apply the following expression (that resembles Newton's 2nd law, applying to rigid bodies instead of point masses) as follows:

       \tau = I * \alpha  (1)

  • Where τ is the external torque applied to the body, I is the rotational inertia of the body regarding the axis of rotation, and α is the angular acceleration as a consequence of the torque.
  • Since the force is applied tangentially to the rim of the disk, it's perpendicular to the radius, so the torque can be calculated simply as follows:
  • τ = F*r (2)
  • For a solid uniform disk, the rotational inertia regarding an axle passing through its center  is just I = m*r²/2 (3).
  • Replacing (2) and (3) in (1), we can solve for α, as follows:

       \alpha = \frac{2*F}{m*r} = \frac{2*34.5N}{35.2kg*0.2m} = 9.8 rad/s2 (4)

  • Since the angular acceleration is constant, we can use the following kinematic equation:

        \omega_{f}^{2}  - \omega_{o}^{2} = 2*\Delta \theta * \alpha (5)

  • Prior to solve it, we need to convert the angle rotated from revs to radians, as follows:

       0.2 rev*\frac{2*\pi rad}{1 rev} = 1.3 rad (6)

  • Replacing (6) in (5), taking into account that ω₀ = 0 (due to the disk starts from rest), we can solve for ωf, as follows:

       \omega_{f} = \sqrt{2*\alpha *\Delta\theta} = \sqrt{2*1.3rad*9.8rad/s2} = 5.1 rad/sec (7)

  • Now, we know that there exists a fixed relationship the tangential speed and the angular speed, as follows:

        v = \omega * r (8)

  • where r is the radius of the circular movement. If we want to know the tangential speed of a point located on the rim of  the disk, r becomes the radius of the disk, 0.200 m.
  • Replacing this value and (7) in (8), we get:

       v= 5.1 rad/sec* 0.2 m = 1.01 m/s (9)

b)    

  • There exists a fixed relationship between the tangential and the angular acceleration in a circular movement, as follows:

       a_{t} = \alpha * r (9)

  • where r is the radius of the circular movement. In this case the point is located on the rim of the disk, so r becomes the radius of the disk.
  • Replacing this value and (4), in (9), we get:

       a_{t}  = 9.8 rad/s2 * 0.200 m = 1.96 m/s2 (10)

  • Now, the resultant acceleration of a point of the rim, in magnitude, is the vector sum of the tangential acceleration and the radial acceleration.
  • The radial acceleration is just the centripetal acceleration, that can be expressed as follows:

       a_{c} = \omega^{2} * r  (11)

  • Since we are asked to get the acceleration after the disk has rotated 0.2 rev, and we have just got the value of the angular speed after rotating this same angle, we can replace (7) in (11).
  • Since the point is located on the rim of the disk, r becomes simply the radius of the disk,, 0.200 m.
  • Replacing this value and (7) in (11) we get:

       a_{c} = \omega^{2} * r   = (5.1 rad/sec)^{2} * 0.200 m = 5.2 m/s2 (12)

  • The magnitude of the resultant acceleration will be simply the vector sum of the tangential and the radial acceleration.
  • Since both are perpendicular each other, we can find the resultant acceleration applying the Pythagorean Theorem to both perpendicular components, as follows:

       a = \sqrt{a_{t} ^{2} + a_{c} ^{2} } = \sqrt{(1.96m/s2)^{2} +(5.2m/s2)^{2} } = 5.6 m/s2 (13)

6 0
3 years ago
What is electron capture
USPshnik [31]
Well a Electron capture is, <span> one process that unstable atoms can use to become more stable. :) Hope this helps if ya want subscribe to my YouTube it's Enstanding tysm!</span>
7 0
4 years ago
A ball is rolling down a hill. Wich action would slow the ball down?
Feliz [49]

Answer:

Friction Force

hope this helped :)

Explanation:

4 0
3 years ago
Read 2 more answers
5. From the definition of work, explain why only the vertical height of the stairs is measured. Hint: Think of the data table co
natulia [17]
The motivation behind why the vertical stature of the stairs is the main thing measured is that it uncovers to us how much gravity is up against the individual and their weight, so we require this data to decide how much vitality and power we have to get up the stairs.
8 0
4 years ago
Can someone help me its really hard to do d is stuff​
Tasya [4]

Answer:

direction, speed

means the object is staying still, 0

newtons, N

the sum of all the forces acting on an object

Explanation:

3 0
3 years ago
Other questions:
  • What metric unit would you use to estimate the actual distance between Boston and New York?
    14·1 answer
  • MANY POINTS!!! PLZ! I NEED HELP!!!
    14·1 answer
  • A uniform 40-N board supports two children weighing 500 N and 350 N. If the support is at the center of the board and the 500-N
    5·1 answer
  • A linear accelerator uses alternating electric fields to accelerate electrons to close to the speed of light. A small number of
    9·1 answer
  • A runner runs the 100 meter dash in 16.6 seconds. What is their average speed? (in meters per second) SOMEBODY PLEASE HELP ME!!!
    7·1 answer
  • . Define 1 watt power​
    6·2 answers
  • A basketball player is running at 4.80 m/s directly toward the basket when he jumps into the air to dunk the ball. He maintains
    6·1 answer
  • The sun's energy is stored in fossil fuels. true or false.
    9·1 answer
  • What does wave speed have to do with all SONAR AND RADAR technologies?
    12·2 answers
  • How does the wind turbine generator work?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!