Answer:
Nitrogen molecule (N2)
The electronic configuration of nitrogen (Z=7) = 1s2 2s2 2px12py12pz1.
The total number of electrons present in the nitrogen molecule (N2) is 14.
In order to maximize energy, these 14 electrons can be accommodated in the different molecular orbitals.
N2: KK'(σ2s)2 (σ*2s)2 (π2Px)2 (π2py)2 (σ2pz)2
Here (σ1s)2 (σ*1s)2 part of the configuration is abbreviated as KK’, which denotes the K shells of the two atoms. In calculating bond order, we can ignore KK’, as it includes two bonding and two antibonding electrons.
The bond order of N2can be calculated as follows:
Here, Nb = 10 and Na = 4
Bond order = (Nb−Na) /2
B.O = (10−4)/2
B.O = 3
So your answer should be C3.
Is the 3 one Hexa:6 and octa:8
First one is chemical and second one is physical
Moles of Carbondioxide-CO₂ produced = 20 moles
<h3>Further explanation</h3>
The combustion of hydrocarbons with excess oxygen will produce carbon dioxide and water(CO₂+H₂O), whereas if there is not much oxygen, carbon monoxide and water(CO+H₂O) will be obtained.
The reaction coefficient in a chemical equation shows the mole ratio of the reacting compounds
Reaction (combustion of butane) :
<em>2C₄H₁₀+13O₂⇒8CO₂+10H₂O</em>
Butane reacts completely, then Butane is the limiting reactant and oxygen as the excess reactant, so the moles of Carbon dioxide are based on the butane moles as the limiting reactant.
moles of butane - C₄H₁₀ = 5 moles
From the reaction, the mol ratio of C₄H₁₀ and CO₂ : 2 : 8, so mol CO₂ :
