Answer:
Dna is a molecule. It carries hereditary information. It is located in the chromosomes.
Answer:
<em>- 0.0413°C ≅ - 0.041°C (nearest thousands).</em>
Explanation:
- Adding solute to water causes the depression of the freezing point.
<em>ΔTf = Kf.m,</em>
Where,
ΔTf is the change in the freezing point.
Kf is the freezing point depression constant (Kf = 1.86 °C/m).
m is the molality of the solution.
<em>Molality is the no. of moles of solute per kg of the solution.</em>
- <em>no. of moles of solute (glucose) = mass/molar mass</em> = (8.44 g)/(180.156 g/mol) = <em>0.04685 mol.</em>
<em>∴ molality (m) = no. of moles of solute/kg of solvent</em> = (0.04685 mol)/(2.11 kg) = <em>0.0222 m.</em>
∴ ΔTf = Kf.m = (1.86 °C/m)(0.0222 m) = 0.0413°C.
<em>∴ The freezing point of the solution = the freezing point of water - ΔTf </em>= 0.0°C - 0.0413°C = <em>- 0.0413°C ≅ - 0.041°C (nearest thousands).</em>
Answer:
The physical properties of a solution are different from those of the pure solvent. ... Colligative properties are those physical properties of solutions of nonvolatile solutes that depend only on the number of particles present in a given amount of solution, not on the nature of those particles.
Answer:
Mass of original sample = 100 g
Explanation:
Half life of cesium-137 = 30.17 years
Where, k is rate constant
So,
The rate constant, k = 0.02297 year⁻¹
Time = 90.6 years
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Initial concentration
= ?
Final concentration
= 12.5 grams
Applying in the above equation, we get that:-
![[A_0]=\frac{12.5}{e^{-0.02297\times 90.6}}\ g=100\ g](https://tex.z-dn.net/?f=%5BA_0%5D%3D%5Cfrac%7B12.5%7D%7Be%5E%7B-0.02297%5Ctimes%2090.6%7D%7D%5C%20g%3D100%5C%20g)
<u>Mass of original sample = 100 g</u>
Less water = less weight to make it rise
More water = more weight to make it dive