Answer:
3x.....
Step-by-step explanation:
Answer:
graph{3x+5 [-10, 10, -5, 5]}
x
intercept:
x
=
−
5
3
y
intercept:
y
=
5
Explanation:
For a linear graph, the quickest way to sketch the function is to determine the
x
and
y
intercepts and draw a line between the two: this line is our graph.
Let's calculate the
y
intercept first:
With any function,
y
intercepts where
x
=
0
.
Therefore, substituting
x
=
0
into the equation, we get:
y
=
3
⋅
0
+
5
y
=
5
Therefore, the
y
intercept cuts through the point (0,5)
Let's calculate the
x
intercept next:
Recall that with any function:
y
intercepts where
x
=
0
.
The opposite is also true: with any function
x
intercepts where
y
=
0
.
If we substitute
y
=
0
, we get:
0
=
3
x
+
5
Let's now rearrange and solve for
x
to calculate the
x
intercept.
−
5
=
3
x
−
5
3
=
x
Therefore, the
x
intercept cuts through the point
(
−
5
3
,
0
)
.
Now we have both the
x
and
y
intercepts, all we have to do is essentially plot both intercepts on a set of axis and draw a line between them
The graph of the function
y
=
3
x
+
5
:
graph{3x+5 [-10, 10, -5, 5]}
Heron's formula is named after Hero of Alexendria, a Greek Engineer and Mathematician in 10 - 70 AD. You can use this formula to find the area of a triangle using the 3 side lengths.
Therefore, you do not have to rely on the formula for area that uses base and height. The picture below illustrates the general fro mu la where S represents the semi-perimeter of the triangle ,
First leave the first fraction alone.
Then turn the division sign into a multiplication sign.
Flip the second fraction over ( find its reciprocal ).
Multiply the numerators of the two fractions together. This result will be the numerator ( the top part ) of your answer.
Multiply the denominators of the two fractions together. The result will be the denominator ( the bottom part ) of your answer.
Then simplify your fraction by reducing it to the simplest terms.