Intermolecular forces of attraction hold the molecules together. These forces determine the physical properties of substances like melting and boiling points. There are five types of intermolecular forces: Hydrogen bonding, dipole-dipole interactions, ionic interactions, ion-dipole interactions and dispersion forces.
Hydrogen bonding is a stronger force of attraction between hydrogen atom and an electronegative atom (F, N, and O). So, water molecules exhibit hydrogen bonding.
In carbon dioxide molecules, although each C=O is polar the molecule as a whole will be non polar due to symmetry. Therefore, the only intermolecular forces in CO2 will be dispersion forces.
Hence, Hydrogen bonding exists between water molecules but not carbon dioxide molecules.
The balanced equation for the reaction is as follows
Cu₂O + 2HCl ---> 2CuCl + H₂O
Molar ratio of Cu₂O to CuCl is 1:2
mass of Cu₂O reacted - 73.5 g
Number of moles of Cu₂O reacted - 73.5 g / 143 g/mol = 0.51 mol
According to the molar ratio,
when 1 mol of Cu₂O reacts then 2 mol of CuCl is formed
therefore when 0.51 mol of Cu₂O reacts then - 2 x 0.51 mol of CuCl is formed
number of CuCl moles formed - 1.02 mol
mass of CuCl formed - 1.02 mol x 99 g/mol = 101 g
mass of CuCl formed is 101 g
Answer:
2Mg (s) +
(g) ---> 2MgO (s)
Explanation:
Answer:
0.0738 M
Explanation:
HNO3 +LiOH = LiNO3 + H2O
Number of moles HNO3 = number of moles LiOH
M(HNO3)*V(HNO3) = M(LiOH)*M(LiOH)
M(HNO3)*50.0mL = 0.100M*36.90 mL
M(HNO3) = 0.100*36.90/50.0 M = 0.0738 M
Answer:
Weather is at a specific place and time. Climate is over a period of time.
Explanation:
That is the difference