The weighted average atomic mass of Silicon is 28.1
(27.98 x .9223) + (28.98 x .0468) + (29.97 x .0309)
= 25.81 + 1.36 + .93
= 28.1
One difficulty encountered in precipitation titration is that it is hard to determine the exact end point of its reaction.
Precipitation titration is a titration in which a reaction occurs from the analyte and titrant to form an insoluble precipitate.
With the use of silver for the titrations, (argentometric) we are able to develop many precipitation reactions.
The precipitation titrimetry methods with the use of argentometry includes
• Mohr’s Method
• Fajan’s Method
• Volhard’s Method
Difficulties encountered in precipitation titration includes
- Getting the exact end point is hard.
- it is a very slow titration method.
- it includes periods of filtration and cooling thereby reducing the reactions available for this type of titration.
See more on Precipitation: brainly.com/question/20628792
Answer:
The answer to your question is: The first option is correct.
Explanation:
From the data given, we conclude that as the amount of salt increases, the boiling point of water increases.
Options
If salt is added to water, the water will boil at a higher temperature This is the hypothesis for the experiment.
Salt makes water boil. This statement is not true.
If water is boiling, it must have salt added to it. This statement is incorrect, it is not the goal of the experiment.
If salt is added to water, the water will get cloudy There is not evidence of that from the information given.
Answer:
Indicators show changes in the pH of a solution
Explanation:
A pH meter is an instrument that measures the hydrogen-ion activity in aqueous solutions, indicating the acidity or alkalinity of the solution expressed as pH .The pH meter measures the difference in electrical potential between a pH electrode and a reference electrode, hence the pH meter is sometimes referred to as a potentiometric pH meter. Potentiometric pH meters measure the voltage between two electrodes and display the result converted into the corresponding pH value. The instrument comprises of a simple electronic amplifier and a pair of electrodes, or alternatively a combination electrode, and some form of display calibrated in pH units. It usually has a glass electrode and a reference electrode, or a combination electrode. The electrodes, or probes, are inserted into the solution to be tested.
Organic indicators are chemical species that change their colour in response to changes in the pH of the solution. This implies that the anionic and protonated forms of the indicator possess different colours. Hence the colour changes in acidic, basic and neutral solutions. The images attached indicate the colour changes in phenolphthalein and methyl orange in acidic and basic media accordingly.