Answer:

Explanation:
Torque,
is given by
where F is force and r is perpendicular distance
where
is the angle of inclination
Torque,
can also be found by
where I is moment of inertia and a is angular acceleration
Therefore, Fr=Ia and F=mg where m is mass and g is acceleration due to gravity
Making a the subject,
and already I is given as
hence
Taking g as 9.81,
is given as 37 and L is 1.2
Answer:
6692J
Explanation:
Power is defined as the rate at which work is being done.
So,
Power =
Work done = Power x time
Given parameters:
Power = 478watts
Time = 14s
So;
Work done = 478 x 14 = 6692J
Answer:
vp = 0.94 m/s
Explanation
Formula
Vp = position/ time
position: Initial position - Final position
Position = 25 m - (-7 m) = 25 m + 7 m = 32 m
Then
Vp = 32 m / 34 seconds
Vp = 0.94 m/s
Answer:
I think the answer is B. amount of energy present but I'm not 100% sure
Explanation:
Answer:
1456 N
Explanation:
Given that
Frequency of the piano, f = 27.5 Hz
Entire length of the string, l = 2 m
Mass of the piano, m = 400 g
Length of the vibrating section of the string, L = 1.9 m
Tension needed, T = ?
The formula for the tension is represented as
T = 4mL²f²/ l, where
T = tension
m = mass
L = length of vibrating part
F = frequency
l = length of the whole part
If we substitute and apply the values we have Fri. The question, we would have
T = (4 * 0.4 * 1.9² * 27.5²) / 2
T = 4368.1 / 2
T = 1456 N
Thus, we could conclude that the tension needed to tune the string properly is 1456 N