Answer:
The magnitude of change in momentum is (2mv).
Explanation:
The momentum of an object is given by the product of mass and velocity with which it is moving.
Let the mass of ball is m. A tennis player smashes a ball of mass m horizontally at a vertical wall. The ball rebounds at the same speed v with which it struck the wall.
Initial speed of the ball is v and final speed, when it rebounds, is (-v). The change in momentum is given by :
p = final momentum - initial momentum

So, the magnitude of change in momentum is (2mv).
In this problem,
Applied force(F) = 10 N
The object’s mass (m) is 5 kg.
Having said that,
An object’s force is equal to the product of its mass and the acceleration it experiences as a result of the applied force.
i.e., Mass + Acceleration = Force (a)
F= m×a
Therefore,
A= F÷m
A= (10÷5) m/sec²
A= 2 m/sec²
Consequently, the object’s acceleration,
A=2 m/sec²
Concept of force and acceleration:
This states that the rate of velocity change of an object is directly proportional to the applied force and moves in the direction of the applied force.
It can be expressed mathematically as force (N) = mass (kg) x acceleration (m/s2). Therefore, an object with constant mass will accelerate in direct proportion to the applied force.
To know more about such problems, visit:
brainly.com/question/16743612
#SPJ4
Step 1: Look in your book or online for the conical pendulum equation.
Step 2: Look at the drawing and see which angle is involved in the equation.
Answer: It's Angle #2 in your drawing.