Answer:
1)ammeter
2)ised to check measure of current flow through a circuit
3)o.90 ambere
Answer:
8.6 m
Explanation:
The motion of a soccer ball is a motion of a projectile, with a uniform motion along the horizontal (x-) direction and an accelerated motion along the vertical (y-) direction, with constant acceleration
towards the ground (we take upward as positive direction, so acceleration is negative).
The initial velocity along the vertical direction is

Now we can consider the motion along the vertical direction only. the vertical velocity at time t is given by:

At the point of maximum height,
, so we can find the time t at which the ball reaches the maximum height:

And now we can use the equation of motion along the y-axis to find the vertical position of the ball at t=1.33 s, which corresponds to the maximum height of the ball:

Explanation:
1) N₂ + O₂ → 2 NO
Kc = [NO]² / ([N₂] [O₂])
Set up an ICE table:
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\N_{2}&0.114&-x&0.114-x\\O_{2}&0.114&-x&0.114-x\\NO&0&+2x&2x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%26Initial%26Change%26Equilibrium%5C%5CN_%7B2%7D%260.114%26-x%260.114-x%5C%5CO_%7B2%7D%260.114%26-x%260.114-x%5C%5CNO%260%26%2B2x%262x%5Cend%7Barray%7D%5Cright%5D)
Plug into the equilibrium equation and solve for x.
1.00×10⁻⁵ = (2x)² / ((0.114 − x) (0.114 − x))
1.00×10⁻⁵ = (2x)² / (0.114 − x)²
√(1.00×10⁻⁵) = 2x / (0.114 − x)
0.00316 = 2x / (0.114 − x)
0.00361 − 0.00316x = 2x
0.00361 = 2.00316x
x = 0.00018
The volume is 1.00 L, so the concentrations at equilibrium are:
[N₂] = 0.114 − x = 0.11382
[O₂] = 0.114 − x = 0.11382
[NO] = 2x = 0.00036
2(a) Cl₂ → 2 Cl
Kc = [Cl]² / [Cl₂]
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\Cl_{2}&2.0&-x&2.0-x\\Cl&0&+2x&2x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%26Initial%26Change%26Equilibrium%5C%5CCl_%7B2%7D%262.0%26-x%262.0-x%5C%5CCl%260%26%2B2x%262x%5Cend%7Barray%7D%5Cright%5D)
1.2×10⁻⁷ = (2x)² / (2 − x)
1.2×10⁻⁷ (2 − x) = 4x²
2.4×10⁻⁷ − 1.2×10⁻⁷ x = 4x²
2.4×10⁻⁷ ≈ 4x²
x² ≈ 6×10⁻⁸
x ≈ 0.000245
2x ≈ 0.00049
2(b) F₂ → 2 F
Kc = [F]² / [F₂]
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\F_{2}&2.0&-x&2.0-x\\F&0&+2x&2x\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcccc%7D%26Initial%26Change%26Equilibrium%5C%5CF_%7B2%7D%262.0%26-x%262.0-x%5C%5CF%260%26%2B2x%262x%5Cend%7Barray%7D%5Cright%5D)
1.2×10⁻⁴ = (2x)² / (2 − x)
1.2×10⁻⁴ (2 − x) = 4x²
2.4×10⁻⁴ − 1.2×10⁻⁴ x = 4x²
2.4×10⁻⁴ ≈ 4x²
x² ≈ 6×10⁻⁵
x ≈ 0.00775
2x ≈ 0.0155
F₂ dissociates more, so Cl₂ is more stable at 1000 K.
Answer:
The answer is tiny organisms known as cyanobacteria, or blue-green algae. These microbes conduct photosynthesis: using sunshine, water and carbon dioxide to produce carbohydrates and, yes, oxygen.
Answer:
Explanation:
Average speed= Total distance/ Total time
Initial reading= 2200
final reading= 3800
total distance= Final reading -initial reading = 3800-2200 = 1600 km
total time= 20 hrs
Average speed= 1600/20
= 80 km/hr
CONVERTING km/hr TO m/s
To convert km/hr to m/s just multiply
Recall that,
1000m = 1 km
60 secs = 1 min
60 mins = 1 hr
( 80 × 1000 ) meters / ( 60×60 ) secs
80000m / 3600s
= 22.22m/s