1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ehidna [41]
3 years ago
8

A large fake cookie sliding on a horizontal surface is attached to one end of a horizontal spring with spring constant k = 440 N

/m; the other end of the spring is fixed in place. The cookie has a kinetic energy of 20.0 J as it passes through the spring's equilibrium position. As the cookie slides, a frictional force of magnitude 11.0 N acts on it. (a) How far will the cookie slide from the equilibrium position before coming momentarily to rest? (b) What will be the kinetic energy of the cookie as it slides back through the equilibrium position?
Physics
1 answer:
irinina [24]3 years ago
3 0

Answer:

a) 0.275 m b) 13.6 J

Explanation:

In absence of friction, the energy is exchanged between the spring (potential energy) and the cookie (kinetic energy), so at any point, the sum of both energies must be the same:

E = ½ kx2 + ½ mv2

If we take as initial state, the instant when the cookie is passing through the spring’s equilibrium position, all the energy is kinetic, and we know that is equal to 20.0 J.

After sliding to the right, while is being acted on by a friction force, it came momentarily at rest. At this point, the initial kinetic energy, has become potential elastic energy, in part, and in thermal energy also, represented by the work done by the friction force.

So, for this state, we can say the following:

Ki = Uf + Eth = ½* k*d2 + Ff*d

20.0J = ½ *440 N/m* d2 + 11.0 *d, where d is the compressed length of the spring, which is equal to the distance travelled by the cookie before coming momentarily at rest.

We have a quadratic equation, that, after simplifying terms, can be solved as follows, applying the quadratic formula:

d = -0.05/2 +/- √0.090625 = -0.025 +/- 0.3 = 0.275 m (we take the positive root)

b) If we take as our new initial status the moment at which the spring is compressed, and the cookie is at rest, all the energy is potential:

E = Ui = 1/2 k d²

In this case, d is the same value that we got in a), i.e., 0.275 m (as the distance travelled by the cookie after going through the equilibrium point is the same length that the spring have been compressed).

E= 1/2 440 N/m . (0.275)m² = 16.6 J

When the cookie passes again through the equilibrium position, the energy will be in part kinetic, and in part, it will have become thermal energy again.

So, we can write the following equation:

Kf = Ui - Ff.d = 16.6 J - 11.0 (0.275) m = 16.6 J - 3.03 J = 13.6 J

You might be interested in
Two liquids, A and B, have equal masses and equal initial temperatures. Each is heated for the same length of time over identica
DochEvi [55]

Answer:

So the specific heat of the liquid B is greater than that of A.

Explanation:

Liquid A is hotter than the liquid B after both the liquids are heated identically for the same duration of time from the same initial temperature then according to heat equation,

Q=m.c.\Delta T

where:

m = mass of the body

c = specific heat of the body

\Delta T= change in temperature of the body

The identical heat source supplies the heat for the same amount of time then the quantity of heat supplied is also equal.

So for constant heat, constant mass the temperature change is inversely proportional to the specific of heat of the liquid.

\Delta T=\frac{Q}{m} \times \frac{1}{c}

\Delta T\propto\frac{1}{c}

So the specific heat of the liquid B is greater than that of A.

5 0
2 years ago
In which of these samples do the molecules most likely have the most kinetic energy? (2 points)
Vinvika [58]

D, water vapor. Gaseous state would have more kinetic energy, they are moving faster. If you have to compare the same state, then higher temperature would have the higher kinetic energy. But if you have solid and liquid at the same temperature - then liquid would have more.

4 0
3 years ago
Needing the answers ... i’ll make you brainliest ! Thank you✅
otez555 [7]

1) 4°C : It has the highest density as shown on the graph.

2) Water expands when it freezes, making it less dense than just water.

3) The ice would sink to the bottom, then the rest of the water would freeze as well, the entire lake/river/whatever will freeze eliminating the organisms that live there.

7 0
3 years ago
A golf ball strikes a hard, smooth floor at an angle of 39.8 ° and, as the drawing shows, rebounds at the same angle. The mass o
tangare [24]

Answer:

The magnitude of the impulse is 1.33 kg m/s

Explanation:

please look at the solution in the attached Word file

Download docx
7 0
3 years ago
Read 2 more answers
A block has a volume of 0.09 m3 and a density of 4,000 kg/m3. What's the force of gravity acting on the block in water?
12345 [234]

                                       Density = (mass) / (volume)

                                4,000 kg/m³ = (mass) / (0.09 m³)

Multiply each side
by  0.09 m³ :           (4,000 kg/m³) x (0.09 m³) = mass

                                 mass = 360 kg .

Force of gravity = (mass) x (acceleration of gravity)

                           = (360 kg) x (9.8 m/s²)

                           = (360 x 9.8)  kg-m/s²

                           =   3,528 newtons . 

That's the force of gravity on this block, and it doesn't matter
what else is around it.  It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).

Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity.  That's the buoyant force due to the displaced water.

The block is displacing 0.09 m³ of water.  Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water.  The weight
of that water is  (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.

So while it's in the water, the block seems to weigh

       (3,528  -  882) = 2,646 newtons  (about 595.2 pounds) .

But again ... it's not correct to call that the "force of gravity acting
on the block in water".  The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
5 0
3 years ago
Read 2 more answers
Other questions:
  • What happens to Earth’s axis of rotation as Earth orbits the Sun?
    9·1 answer
  • A cube has sides of 11.4 cm. What is its volume? 1,482 cm3 130 cm3 1,443 cm3 34.2 cm3
    10·1 answer
  • Which of the advantages to social media as a new media could also be viewed as a disadvantage
    10·2 answers
  • A model airplane has momentum given by p=[(-0.75kg.m/s3)t2 + (3.0kg.m/s)] i + (0.25kg.m/s2)t j. Find the components Fx, Fy, and
    5·1 answer
  • A teacher uses the model that little invisible gremlins speed up or slow down objects and the direction they push gives the dire
    11·2 answers
  • A wave with high amplitude _____.
    11·2 answers
  • An incandescent bulb produces 520 lumens and has an efficacy of 13 lm/W.
    6·2 answers
  • A projectile is launched at an angel into the air its verticle acceleration is g?
    10·1 answer
  • A 698 kg car at rest rolls down a hill from a starting height of 7.9 m. What is the final speed of the car at the bottom of the
    13·1 answer
  • A Chevy Camaro drives straight off the top level off a parking garage at 9 m/s. If the car landed 81 meters away from the base o
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!