Answer:k
Explanation:
Atomic theory would be the theory or explanation of the function of atoms and their relationship with each other.
I think the right answer for this question is option A. The energy absorbed so the mass will be increased.
The equilibrium constant k is actually the ratio of the
concentration of the products over the concentration of reactants at equilibrium. So if the
concentration of products < concentration of reactants, therefore the
constant k will be small. But if the concentration of products >
concentration of reactants, the constant k will be large. In this case the
value is too small (x10^-19), therefore we can say that the reaction favors the
reactant side:
the equilibrium lies far to the left
KE = 1/2 * m * v^2
KE = 1/2 * 130 * 23^2
KE = 34385J
Answer:
Kindly check the explanation section.
Explanation:
From the description given in the question above, that is '' H subscript f to the power of degree of the reaction" we have that the description matches what is known as the heat of formation of the reaction, ∆fH° where the 'f' is a subscript.
In order to determine the heat of formation of any of the species in the reaction, the heat of formation of the other species must be known and the value for the heat of reaction, ∆H(rxn) must also be known. Thus, heat of formation can be calculated by using the formula below;
∆H(rxn) = ∆fH°( products) - ∆fH°(reactants).
That is the heat of formation of products minus the heat of formation of the reaction g specie(s).
Say heat of formation for the species is known as N(g) = 472.435kj/mol, O(g) = 0kj/mol and NO = unknown, ∆H°(rxn) = −382.185 kj/mol.
−382.185 = x - 472.435kj/mol = 90.25 kJ/mol