Answer:
The correct answer is C.) metallic bonds
Explanation:
Metallic bonds are formed between metal compounds and are very strong. These links are explained by the "sea model of electrons", where valence electrons are ceded by each metal atom, becoming positive ions forming a three-dimensional crystalline network. These electrons move forming a network ("sea") that allows the union of the positive ions formed.
The number of hours required : 37.2 hours
<h3>Further explanation</h3>
Given
⁴²K (potassium -42)
Required
The number of hours
Solution
The atomic nucleus can experience decay into 2 particles or more due to the instability of its atomic nucleus.
Usually, radioactive elements have an unstable atomic nucleus.
Based on Table N(attached), the half-life for ⁴²K is 12.4 hours, which means half of a sample of ⁴²K will decay in 12.4 hours
For three half-life periods :

<span>1,3-cylohexadiene i synthesized starting from cyclohexane in following 4 steps.
1) Free Radical Substitution Rxn: Halogenation of cyclohexane in the presence of UV yield chlorocyclohexane.
2) Elimination Rxn: Dehydrohalogenation of chlorocyclohexane yields cyclohexene.
3) Halogenation of Cyclohexene (
Electrophillic Addition Rxn) gives 1,2-dihalocyclohexane.
4) Elemination Rxn: When dibromocyclohexane is treated with KOH and heated it gives 1,3-cyclohexadiene as shown below,</span>
<h3><u>Answer and explanation</u>;</h3>
- <em><u>The isotope U-235 is an important common nuclear fuel because under certain conditions it can readily be split, yielding a lot of energy. It is therefore said to be 'fissile' and use the expression 'nuclear fission'.</u></em>
- <em><u>Uranium 238 on the other hand is not fissionable by thermal neutrons, but it can undergo fission from fast or high energy neutrons. Hence it is not fissile, but it is fissionable.</u></em>
- In a nuclear power station fissioning of uranium atoms replaces the burning of coal or gas. Heat created by splitting the U-235 atoms is then used to make steam which spins a turbine to drive a generator, producing electricity.
When an atom combines chemically with another atom, it either gains, loses, or shares ELECTRONS.