Formula: % by mass = (mass of solute / mass of solution] *100
Data:
mass of solution = 80.85 g
% by mass = 22.4%
Unknown = mass of solute
Solution
% by mass = (mass of solute / mass of solution] *100 = >
mass of solute = % by mass * mass of solution / 100
mass of solute = 22.4 * 80.85 / 100 = 18.11 g
Answer: 18.11 g
When parallel rays exit a concave lens, the light rays are divergent.
The rays diverge or bend away from the axis it has been traveling upon entering the lens when it reaches the other side of the lens. These rays appear to have come from the same focal point before entering the concave lens. When these parallel rays are extended, it will be traced back to a single point of origin.
Then that would be 100% all together I believe
Answer:
3. V = 0.2673 L
4. V = 2.4314 L
5. V = 0.262 L
6. V = 2.224 L
Explanation:
3. assuming ideal gas:
∴ R = 0.082 atm.L/K.mol
∴ V1 = 225 L
∴ T1 = 175 K
∴ P1 = 150 KPa = 1.48038 atm
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(175 K))/((1.48038 atm)(225 L))
⇒ n = 0.043 mol
∴ T2 = 112 K
∴ P2 = P1 = 150 KPa = 1.48038 atm
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(112 K)(0.043 mol))/(1.48038 atm)
⇒ V2 = 0.2673 L
4. gas is heated at a constant pressure
∴ T1 = 180 K
∴ P = 1 atm
∴ V1 = 44.8 L
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(180 K))/((1 atm)(44.8 L))
⇒ n = 0.3295 mol
∴ T2 = 90 K
⇒ V2 = RT2n/P
⇒ V2 = ((0.082 atm.L/K.mol)(90 K)(0.3295 mol))/(1 atm)
⇒ V2 = 2.4314 L
5. V1 = 200 L
∴ P1 = 50 KPa = 0.4935 atm
∴ T1 = 271 K
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(271 K))/((0.4935 atm)(200 L))
⇒ n = 0.2251 mol
∴ P2 = 100 Kpa = 0.9869 atm
∴ T2 = 14 K
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(14 K)(0.2251 mol))/(0.9869 atm)
⇒ V2 = 0.262 L
6.a) ∴ V1 = 24.6 L
∴ P1 = 10 atm
∴ T1 = 25°C = 298 K
⇒ n = RT/PV
⇒ n = ((0.082 atm.L/K.mol)(298 K))/((10 atm)(24.6 L))
⇒ n = 0.0993 mol
∴ T2 = 273 K
∴ P2 = 101.3 KPa = 0.9997 atm
⇒ V2 = RT2n/P2
⇒ V2 = ((0.082 atm.L/K.mol)(273 K)(0.0993 mol))/(0.9997 atm)
⇒ V2 = 2.224 L