Heating up a reaction increases the speed of a reaction until the enzyme denatures.
<h3>What is enzyme denaturation?</h3>
Enzyme denaturation occurs when a biological protein catalyst does not work anymore due to a high temperature that alters its tridimensional conformation.
This cellular process (denaturation) is well known to be one of the main causes of enzymatic failure.
In conclusion, heating up a reaction increases the speed of a reaction until the enzyme denatures.
Learn more about enzymes here:
brainly.com/question/1596855
#SPJ12
Answer:
Alpha particle
Explanation:
An alpha particle is a helium nucleus, 2 protons and 2 neutrons, loss of an alpha particle give a new element with an atomic number 2 less than the original isotope and an atomic mass that is lower by about 4 amu.
The answer is D. Most common semiconducting materials are crystalline solids. A<span>morphous and liquid semiconductors are also known to be.</span>
Answer:
misteri Cell ini quest ia half-life of beauty of misteri best, of Cell can't answer =
Explanation:
![\sqrt[ \geqslant { { | \geqslant | \geqslant \sqrt[ \gamma \% log_{ \tan( \sqrt[ < \pi \sqrt[ | \geqslant \sqrt[ < \leqslant |x| ]{y} | \times \frac{?}{?} ]{?} ]{?} ) }(?) ]{?} | | }^{2} }^{?} ]{ \sqrt[ < \gamma log_{ \frac{ | \geqslant y \sqrt[ |x \sqrt{ |?| } | ]{?} | }{?} }(?) ]{?} }](https://tex.z-dn.net/?f=%20%5Csqrt%5B%20%5Cgeqslant%20%20%7B%20%7B%20%7C%20%5Cgeqslant%20%20%7C%20%5Cgeqslant%20%20%5Csqrt%5B%20%5Cgamma%20%5C%25%20log_%7B%20%5Ctan%28%20%5Csqrt%5B%20%3C%20%5Cpi%20%5Csqrt%5B%20%7C%20%5Cgeqslant%20%20%5Csqrt%5B%20%3C%20%20%5Cleqslant%20%20%7Cx%7C%20%5D%7By%7D%20%7C%20%20%5Ctimes%20%5Cfrac%7B%3F%7D%7B%3F%7D%20%5D%7B%3F%7D%20%5D%7B%3F%7D%20%29%20%7D%28%3F%29%20%5D%7B%3F%7D%20%7C%20%7C%20%7D%5E%7B2%7D%20%7D%5E%7B%3F%7D%20%5D%7B%20%5Csqrt%5B%20%3C%20%20%5Cgamma%20%20log_%7B%20%5Cfrac%7B%20%7C%20%5Cgeqslant%20y%20%5Csqrt%5B%20%7Cx%20%5Csqrt%7B%20%7C%3F%7C%20%7D%20%7C%20%5D%7B%3F%7D%20%7C%20%7D%7B%3F%7D%20%7D%28%3F%29%20%5D%7B%3F%7D%20%7D%20)
Answer:
The energy absorbed in the first move is greater than the energy released in the second move
Explanation:
Electrons require (absorb) energy to move to a higher energy level when there is a large external heat source, the presence of an electric field or by colliding with other electrons
And the amount of energy absorbed by the electron is exactly equal to the change in the energy state between the initial energy level of the electron and the destination energy level
Therefore, given that the energy level of the electron at level 2 is higher than the energy level of the electron when at level 1, we have;
The difference in the energy level between level 4 and level 1 is greater than the difference in the energy level between level 4 and level 2 and more energy is absorbed and therefore, released when the electron moves from level 1 to level 4 than when the electron drops from level 4 to level 2.
The most likely result is that 'the energy absorbed in the first move is greater than the energy released in the second move'.