Astronauts are found wearing orange-colored Advanced Crew Escape Suit (ACES) while the space shuttle is ascending or entering into space. This peculiar shade of orange known as “International Orange” was chosen for safety as it is highly visible against any kind of landscape, especially in the sea.
The pressure of the gas is obtained as 48 atm.
<h3>What is the total pressure?</h3>
Now we know that;
Number of moles of CH4 = 48.0 grams /16 g/mol = 3 moles
Number of moles of H2 = 56.0 grams/2 g/mol = 28 moles
Total number of moles present = 3 moles + 28 moles = 31 moles
Using;
PV =nRT
P = total pressure
V = total volume
n = total number of moles
R = gas constant
T = temperature
P = nRT/V
P = 31 * 0.082 * 286/15
P = 48 atm
Learn more about pressure of a gas:brainly.com/question/18124975
#SPJ1
Answer:
27 min
Explanation:
The kinetics of an enzyme-catalyzed reaction can be determined by the equation of Michaelis-Menten:
![v = \frac{vmax[S]}{Km + [S]}](https://tex.z-dn.net/?f=v%20%3D%20%5Cfrac%7Bvmax%5BS%5D%7D%7BKm%20%2B%20%5BS%5D%7D)
Where v is the velocity in the equilibrium, vmax is the maximum velocity of the reaction (which is directed proportionally of the amount of the enzyme), Km is the equilibrium constant and [S] is the concentration of the substrate.
So, initially, the velocity of the formation of the substrate is 12μmol/9min = 1.33 μmol/min
If Km is a thousand times smaller then [S], then
v = vmax[S]/[S]
v = vmax
vmax = 1.33 μmol/min
For the new experiment, with one-third of the enzyme, the maximum velocity must be one third too, so:
vmax = 1.33/3 = 0.443 μmol/min
Km will still be much smaller then [S], so
v = vmax
v = 0.443 μmol/min
For 12 μmol formed:
0.443 = 12/t
t = 12/0.443
t = 27 min
Kinetic energy due to the movement