Answer:
This is because of scintillation ("Twinkling") as the light passes through the atmosphere of the Earth. As the air moves in and out, the starlight is refracted, often different colors in different directions. Because of this "chromatic abberation," stars can appear to change colors when they are twinkling strongly.
Explanation:
Answer:
See below :)
Explanation:
There is an evident reason why some of the solutions Carson's has listed and observed, does conduct electricity and some that do.
A flow of electrical charge is called an electric current. Ions are atoms, or sets of atoms, that contain an electrical charge. There are two types of ions, cation or a positively charged ion containing a deficiency of electrons, and anion or a negatively charged ion which contains a surplus of electrons. When a solution conducts electricity the charge is carried within by ions that move through the solution. The larger the number of ions in the solution, the better the conductivity of the solution is. Pure water does not conduct very well because it contains very few ions, but when table salt (NaCl) is dissolved in the water, this solution does conduct well because the solution contains a more abundance of ions. The majority of the ions come from the table salt, chemically names sodium chloride. Because Sodium contains its sodium ions, and these are positive charge and chloride ions which is a negative charge, it is called an ionic substance. Not every substance is made up of ions, one such example is sugar (C12H22O11). Sugar is made up of uncharged particles also called molecules. Although sugar is a substance its molecules do not hold a charge, thus when sugar is dissolved in water, the solution does not conduct electricity, due to the lack of ions in the solution.
Therefore, depending on the ions that make up the compound, the substance would or would not conduct electricity.
The molar mass of monotonic Nitrogen is 14 g/mol. Since this is diatomic Nitrogen, double that to 28 g/mol.
Next, divide total mass by molar mass, 500 g / 28 g/mol, which gives <span>17.8571 moles. A mole is defined as being 6.022*10^23 molecules, so multiply moles by molecules/mol (Avogadro's number), and we finally end up with something like 1.075 * 10^25, give or take a few billion particles.</span>
Answer:
a negative charge
Please Mark Brainliest If This Helped!