Answer:
C
Step-by-step explanation:
Okay so here it is
the answer is M=100D + 200
Why?
because 200miles divided by 2 days is 100 so every day she drives 100 miles which means you would times the days by 100 miles and since you have already gone 200 miles it would be
m=100d+ 200
hope this helps
The hyperbolic cos (cosh) is given by
cosh (x) = (e^x + e^-x) / 2
The slope of a tangent line to a function at a point is given by the derivative of that function at that point.
d/dx [cosh(x)] = d/dx[(e^x + e^-x) / 2] = (e^x - e^-x) / 2 = sinh(x)
Given that the slope is 2, thus
sinh(x) = 2
x = sinh^-1 (2) = 1.444
Therefore, the curve of y = cosh(x) has a slope of 2 at point x = 1.44
Answer:
![\large\boxed{1.\ f^{-1}(x)=4\log(x\sqrt[4]2)}\\\\\boxed{2.\ f^{-1}(x)=\log(x^5+5)}\\\\\boxed{3.\ f^{-1}(x)=\sqrt{4^{x-1}}}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B1.%5C%20f%5E%7B-1%7D%28x%29%3D4%5Clog%28x%5Csqrt%5B4%5D2%29%7D%5C%5C%5C%5C%5Cboxed%7B2.%5C%20f%5E%7B-1%7D%28x%29%3D%5Clog%28x%5E5%2B5%29%7D%5C%5C%5C%5C%5Cboxed%7B3.%5C%20f%5E%7B-1%7D%28x%29%3D%5Csqrt%7B4%5E%7Bx-1%7D%7D%7D)
Step-by-step explanation:


![\log_55^{\frac{1}{4}y}=\log_5\left(2^\frac{1}{4}x\right)\qquad\text{use}\ a^\frac{1}{n}=\sqrt[n]{a}\\\\\dfrac{1}{4}y=\log(x\sqrt[4]2)\qquad\text{multiply both sides by 4}\\\\y=4\log(x\sqrt[4]2)](https://tex.z-dn.net/?f=%5Clog_55%5E%7B%5Cfrac%7B1%7D%7B4%7Dy%7D%3D%5Clog_5%5Cleft%282%5E%5Cfrac%7B1%7D%7B4%7Dx%5Cright%29%5Cqquad%5Ctext%7Buse%7D%5C%20a%5E%5Cfrac%7B1%7D%7Bn%7D%3D%5Csqrt%5Bn%5D%7Ba%7D%5C%5C%5C%5C%5Cdfrac%7B1%7D%7B4%7Dy%3D%5Clog%28x%5Csqrt%5B4%5D2%29%5Cqquad%5Ctext%7Bmultiply%20both%20sides%20by%204%7D%5C%5C%5C%5Cy%3D4%5Clog%28x%5Csqrt%5B4%5D2%29)
![--------------------------\\2.\\y=(10^x-5)^\frac{1}{5}\\\\\text{Exchange x and y. Solve for y:}\\\\(10^y-5)^\frac{1}{5}=x\qquad\text{5 power of both sides}\\\\\bigg[(10^y-5)^\frac{1}{5}\bigg]^5=x^5\qquad\text{use}\ (a^n)^m=a^{nm}\\\\(10^y-5)^{\frac{1}{5}\cdot5}=x^5\\\\10^y-5=x^5\qquad\text{add 5 to both sides}\\\\10^y=x^5+5\qquad\log\ \text{of both sides}\\\\\log10^y=\log(x^5+5)\Rightarrow y=\log(x^5+5)](https://tex.z-dn.net/?f=--------------------------%5C%5C2.%5C%5Cy%3D%2810%5Ex-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5C%5C%5C%5C%5Ctext%7BExchange%20x%20and%20y.%20Solve%20for%20y%3A%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%3Dx%5Cqquad%5Ctext%7B5%20power%20of%20both%20sides%7D%5C%5C%5C%5C%5Cbigg%5B%2810%5Ey-5%29%5E%5Cfrac%7B1%7D%7B5%7D%5Cbigg%5D%5E5%3Dx%5E5%5Cqquad%5Ctext%7Buse%7D%5C%20%28a%5En%29%5Em%3Da%5E%7Bnm%7D%5C%5C%5C%5C%2810%5Ey-5%29%5E%7B%5Cfrac%7B1%7D%7B5%7D%5Ccdot5%7D%3Dx%5E5%5C%5C%5C%5C10%5Ey-5%3Dx%5E5%5Cqquad%5Ctext%7Badd%205%20to%20both%20sides%7D%5C%5C%5C%5C10%5Ey%3Dx%5E5%2B5%5Cqquad%5Clog%5C%20%5Ctext%7Bof%20both%20sides%7D%5C%5C%5C%5C%5Clog10%5Ey%3D%5Clog%28x%5E5%2B5%29%5CRightarrow%20y%3D%5Clog%28x%5E5%2B5%29)
