Answer:
um how about no.. this is not the site for what you're looking for...
Explanation:
100kg x bicycle speed = 1400 X 2
bicycle speed = 2800/ 100
bicycle speed = 28 m/s
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as

Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,

where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that



Replacing the previous equation with our values we have,




The tangential velocity then would be,



Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation

Replacing with our values and re-arrange to find 



That is equal in revolution to

The linear displacement of the system is,



Answer:
(a) 
(b) 
(c) K.E. = 21.168 J
(d) 
Explanation:
Given:
- mass of a block, M = 3.6 kg
- initial velocity of the block,

- constant downward acceleration,

That a constant upward acceleration of
is applied in the presence of gravity.
∴
- height through which the block falls, d = 4.2 m
(a)
Force by the cord on the block,



∴Work by the cord on the block,


We take -ve sign because the direction of force and the displacement are opposite to each other.

(b)
Force on the block due to gravity:

∵the gravity is naturally a constant and we cannot change it


∴Work by the gravity on the block,



(c)
Kinetic energy of the block will be equal to the net work done i.e. sum of the two works.
mathematically:


K.E. = 21.168 J
(d)
From the equation of motion:

putting the respective values:

is the speed when the block has fallen 4.2 meters.
Answer:
Mechanical waves are waves that require a medium. This means that they have to have some sort of matter to travel through. These waves travel when molecules in the medium collide with each other passing on energy. One example of a mechanical wave is sound.