Partial. a penumbral lunar eclipse is when the moon passes through the earths penumbra
Answer:
Inertia can be defined as the tendency of an object or a body to continue in its state of motion or remain at rest unless acted upon by an external force.
Explanation:
Motion can be defined as a change in the location (position) of a physical object or body with respect to a reference point.
This ultimately implies that, motion would occur as a result of a change in location (position) of an object with respect to a reference point or frame of reference i.e where it was standing before the effect of an external force.
Inertia can be defined as the tendency of an object or a body to continue in its state of motion or remain at rest unless acted upon by an external force.
Newton's First Law of Motion is also known as Law of Inertia and it states that, an object or a physical body in motion will continue in its state of motion at continuous velocity (the same speed and direction) or, if at rest, will remain at rest unless acted upon by an external force.
The inertia of an object such as a truck is greatly dependent or influenced by its mass; the higher quantity of matter in a trailer, the greater will be its tendency to continuously remain at rest.
In conclusion, inertia is applicable to all physical objects.
Alpha particles are used in smoke detectors as the ionise the air particles
Answer:
Just like lightning, the spark you see is the discharge of static electricity that equalizes the charges. When you touch a metal object and get a shock, electrons are travelling in between you and the object to equalize the charges of the two objects. The light that is seen is the plasma created by electrons jumping between objects which heats the air surrounding them.
Answer:
The change in the mechanical energy of the projectile is 43,750 J
Explanation:
Given;
mass of the projectile, m = 5 kg
initial velocity of the projectile, u = 200 m/s
final velocity of the projectile, v = 150 m/s
The change in mechanical energy is calculated from the principle of conservation of energy;
ΔP.E = ΔK.E
The change in potential energy is zero (0)
0 = ΔK.E
ΔK.E = K.E₁ - K.E₂
ΔK.E = ¹/₂mu² - ¹/₂mv²
ΔK.E = ¹/₂m(u² - v²)
ΔK.E = ¹/₂ x 5(200² - 150²)
ΔK.E = 43,750 J
Therefore, the change in the mechanical energy of the projectile is 43,750 J