The thing to do here is to balance the eqns that is to balance the stoichometric ratios or coefficients of the cpds.
hope you understand. all the best.
(a)
The formula is:
∑ F = Weight + T = mass * acceleration
as the elevator and lamp are moving downward, I choose downward forces to be
positive.
Weight is pulling down = +(9.8 * mass)
Tension is pulling up, so T = -63
Acceleration is upward = -1.7 m/s^2
(9.8 * mass) + -63 = mass * -1.7
Add +63 to both sides
Add (mass * 1.7) to both sides
(9.8 * mass) + (mass * 1.7) = 63
11.5 * mass = 63
mass = 63 / 11.5
Mass = 5.48 kg
(b)
Since the elevator and lamp are going upward, I choose upward forces to be
positive.
Weight is pulling down = -(9.8 * 5.48) = -53.70
Acceleration is upward, so acceleration = +1.7
-53.70 + T = 5.48 * 1.7
T = 53.70 + 9.316 = approx 63 N
The Tension is still the same - 63 N since the same mass, 5.48 kg, is being accelerated
upward at the same rate of 1.7 m/s^2
90 km/h : 3.6 = 25 m/s. If you know that on earth g = 9.81 m/s^2, then all you have to do is divide the speed by g. 25/9.81 = 2.548 seconds
At least, if by 'gently rolls off a vertical cliff' means that your starting velocity equals zero.
Hi there!
Angular momentum is equivalent to:

L = angular momentum (kgm²/s)
I = moment of inertia (kgm²)
ω = angular velocity (rad/sec)
Plug in the given values for moment of inertia and angular speed:

The answer would be A transverse