Answer:
Ec = 6220.56 kcal
Explanation:
In order to calculate the amount of Calories needed by the climber, you first have to calculate the work done by the climber against the gravitational force.
You use the following formula:
(1)
Wc: work done by the climber
g: gravitational constant = 9.8 m/s^2
M: mass of the climber = 78.4 kg
h: height reached by the climber = 5.42km = 5420 m
You replace in the equation (1):
(2)
Next, you use the fact that only 16.0% of the chemical energy is convert to mechanical energy. The energy calculated in the equation (2) is equivalent to the mechanical energy of the climber. Then, you have the following relation for the Calories needed:

Ec: Calories
You solve for Ec and convert the result to Cal:

The amount of Calories needed by the climber was 6220.56 kcal
Answer:
(a) whether slipping occurs between the belt and the cylinder i think is the answer dont hate if you get it wrong please and thank you.
Explanation:
i am just guessing otay.
Answer: 5.41 V
Explanation:in order to explain this result we have to use the Ohm law given by:
ΔV=R*I where R is the resistance which is equal R= ρ*L/A . ρ is the resistivity, L the length of the wire and A is the cross section. I is the current.
Then we have
ΔV=ρ*L*I/A= 1.68 * 10^-8 Ωm*93.4 m*72.5A/2.1* 10^-5 m^2=5.41 V
2 is c
3 is a
4 is b
5 is c
(A)energy lost in the lever due to friction
(C)
visual estimation of height of the beanbag
(E)position of the fulcrum for the lever affecting transfer of energy