Answer:
An ionic bond essentially donates an electron to the other atom participating in the bond, while electrons in a covalent bond are shared equally between the atoms. Ionic bonds form between a metal and a nonmetal. Covalent bonds form between two nonmetals
Answer
pH=8.5414
Procedure
The Henderson–Hasselbalch equation relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, Kₐ. In this equation, [HA] and [A⁻] refer to the equilibrium concentrations of the conjugate acid-base pair used to create the buffer solution.
pH = pKa + log₁₀ ([A⁻] / [HA])
Where
pH = acidity of a buffer solution
pKa = negative logarithm of Ka
Ka =acid disassociation constant
[HA]= concentration of an acid
[A⁻]= concentration of conjugate base
First, calculate the pKa
pKa=-log₁₀(Ka)= 8.6383
Then use the equation to get the pH (in this case the acid is HBrO)
Ar I did this I think i got it right on edunuty
Answer:
0.6258 g
Explanation:
To determine the number grams of aluminum in the above reaction;
- determine the number of moles of HCl
- determine the mole ratio,
- use the mole ratio to calculate the number of moles of aluminum.
- use RFM of Aluminum to determine the grams required.
<u>Moles </u><u>of </u><u>HCl</u>
35 mL of 2.0 M HCl
2 moles of HCl is contained in 1000 mL
x moles of HCl is contained in 35 mL

We have 0.07 moles of HCl.
<u>Mole </u><u>ratio</u>
6HCl(aq) + 2Al(s) --> 2AlCl3(aq) + 3H2(g)
Hence mole ratio = 6 : 2 (HCl : Al
- but moles of HCl is 0.07, therefore the moles of Al;

Therefore we have 0.0233333 moles of aluminum.
<u>Grams of </u><u>Aluminum</u>
We use the formula;

The RFM (Relative formula mass) of aluminum is 26.982g/mol.
Substitute values into the formula;

The number of grams of aluminum required to react with HCl is 0.6258 g.