Answer:
For each scenario as following:
A. 3 Potential deaths by chlorine exposure
B. 1 Potential deaths by chlorine exposure
C. 3 Potential deaths by chlorine exposure
Explanation:
According to Freitag, 1941 Chlorine exposure can be lethal at the concentration of 34-51 ppm in a time of 1h-1.5h. The answers are based on his reference.
Answer:
Explanation:
The mechanical properties of a material affect how it behaves as it is loaded. The elastic modulus of the material affects how much it deflects under a load, and the strength of the material determines the stresses that it can withstand before it fails
Answer:
proton :
a particale or atom containing a postive charge
nuutron
a particale or atom that contains a negative charge
electron :
a particale or atom with a negative chrage.
Explanation:
proton:
a stable subatomic particle occurring in all atomic nuclei, with a positive electric charge equal in magnitude to that of an electron, but of opposite sign.
nuetron:
a subatomic particle of about the same mass as a proton but without an electric charge, present in all atomic nuclei except those of ordinary hydrogen.
elcetron:
a stable subatomic particle with a charge of negative electricity, found in all atoms and acting as the primary carrier of electricity in solids.
CH3 is a methyl radical, which is formed by removing the hydrogen atom from methane, so the hybridization is SP^3
Answer:

Explanation:
Hello!
In this case, since the equation we use to model the heat exchange into the calorimeter and compute the heat of reaction is:

We plug in the mass of water, temperature change and specific heat to obtain:

Now, this enthalpy of reaction corresponds to the combustion of propyne:

Whose enthalpy change involves the enthalpies of formation of propyne, carbon dioxide and water, considering that of propyne is the target:

However, the enthalpy of reaction should be expressed in kJ per moles of C3H4, so we divide by the appropriate moles in 7.00 g of this compound:

Now, we solve for the enthalpy of formation of C3H4 as shown below:

So we plug in to obtain (enthalpies of formation of CO2 and H2O are found on NIST data base):

Best regards!