The answer is 2.
it’s adding 2 everytime!
Given:
'a' and 'b' are the intercepts made by a straight-line with the co-
ordinate axes.
3a = b and the line pass through the point (1, 3).
To find:
The equation of the line.
Solution:
The intercept form of a line is
...(i)
where, a is x-intercept and b is y-intercept.
We have, 3a=b.
...(ii)
The line pass through the point (1, 3). So, putting x=1 and y=3, we get



Multiply both sides by a.

The value of a is 2. So, x-intercept is 2.
Putting a=2 in
, we get


The value of b is 6. So, y-intercept is 6.
Putting a=2 and b=6 in (i), we get

Therefore, the equation of the required line in intercept form is
.
Answer:
it was discounted by $227.85
Step-by-step explanation:
Answer:
11. ∠B ∠ABC ∠CBA ∠2
17. QR = 12
Step-by-step explanation:
11. ∠B ∠ABC ∠CBA ∠2
17. Given: PS = 18 PR = 15 PQ ≅ RS
It would be good if you could draw a picture for yourself
So, RS = PS - PR
= 18 - 15 = 3
RS = PQ = 3
QR = PS - RS - PQ
= 18 - 3 - 3
= 12