The value for a number that is 1000 more than 3,872 will be 4,872
In the given question, it is stated that we have to find out the value of the expression given. The expression states that we have to find out a number that is 1000 more than 3872.
This can easily be done. To find out the value for a number that is 1000 greater than 3872, we just need to add the value to the number i.e. we need to add 1000 to 3872. Let the new number be 'x'.
So, by solving this condition, we get
=> x = 3872 + 1000
=> x = 4872
Here we get x = 4872.
Hence, 1000 more than 3,872 will be 4,872.
To know more about Linear Equations, Click here:
brainly.com/question/13738061
#SPJ1
<span>probability that the card is a red 8
=
2 out of 52 or 1 out of 26
hope it helps</span>
×=23
:) :) :) :) :););) ;););)
15% x 50 = 7.5
You can search these up in a calculator or in google if you want. The answers should be online.
A) zeroes
P(n) = -250 n^2 + 2500n - 5250
Extract common factor:
P(n)= -250 (n^2 - 10n + 21)
Factor (find two numbers that sum -10 and its product is 21)
P(n) = -250(n - 3)(n - 7)
Zeroes ==> n - 3 = 0 or n -7 = 0
Then n = 3 and n = 7 are the zeros.
They rerpesent that if the promoter sells tickets at 3 or 7 dollars the profit is zero.
B) Maximum profit
Completion of squares
n^2 - 10n + 21 = n^2 - 10n + 25 - 4 = (n^2 - 10n+ 25) - 4 = (n - 5)^2 - 4
P(n) = - 250[(n-5)^2 -4] = -250(n-5)^2 + 1000
Maximum ==> - 250 (n - 5)^2 = 0 ==> n = 5 and P(5) = 1000
Maximum profit =1000 at n = 5
C) Axis of symmetry
Vertex = (h,k) when the equation is in the form A(n-h)^2 + k
Comparing A(n-h)^2 + k with - 250(n - 5)^2 + 1000
Vertex = (5, 1000) and the symmetry axis is n = 5.