Answer:
D
Explanation:
objects with larger mass have more gravitational pull
Answer:
<h3>no it is not allowed</h3>
Explanation:
<h3>Liwis structure shows the elements symbol with dots thet represents valance electrons ; in second row elements their atomic number is 3 up to 10 , from Li up to Ne from their electron configuration their valance electron will be from 1 up to 8 respectivelly ,if lewis structure represents the element with it is symbol and dots that represents valance electron the second row elements cannot have more than an octet of valance electrons surrounding it.</h3>
<h3>I think it is help ful for you </h3>
The answer would be letter C - solution.
A mixture should be homogeneous for a light not to be scattered. This is because particles are distributed evenly throughout the mixture which allows light to pass directly. In your choices, the solution allows a beam of light to pass through a liquid in a test tube without scattering.
Answer:
Described by a redox reaction below
Explanation:
Iron(III) oxide is an ionic compound, since it consists of a metal, iron, and a nonmetal, oxygen.
Ionic compounds are formed when metals lose their valence electrons in order to have an octet in their previous shell and donate them to nonmetal atoms, so that nonmetals fill their outer shell to have an octet.
As a result, positive ions (cations) and negative ions (anions) are formed. When iron reacts with oxygen, the following reaction takes place:

This is a redox (oxidation–reduction) reaction, since we have electron loss and gain. Four iron atoms lose a total of 12 electrons to obtain a +3 charge in the final compound, while 3 oxygen molecules gain these 12 electrons to become 6 oxide anions with a -2 charge.
Answer:
Assume that 100 grams of C2H4 is present. This means that there are 85.7 grams of carbon and 14.3 grams of hydrogen.
Convert these weights to moles of each element:
85.7 grams carbon/12 grams per mole = 7 moles of carbon.
14.3 grams hydrogen/1 gram per mole = 14 moles of hydrogen.
Divide by the lowest number of moles to obtain one mole of carbon and two moles of hydrogen.
Since we know that there cannot be a stable CH2 molecule, multiply by two and you have C2H4 which is ethylene - a known molecule.
The secret is to convert the percentages to moles and find the ration of the constituents.