He could be blindfolded and know which was his and which was his sister's. All he would need to do is pick them both up and if they were too big then pick them up one at a time. The lumber might make it harder to tell, but this is a question about physical properties.
So there is a change in mass which for the purpose of this question should be quite different. His sister's ought to be much lighter than his. He would find it easier to pick up.
The heat cause 300g water temperature increase from 20 to 26 celcius. The heat transferred would be: 300g * (26 °C -20 °C) *4.2 joule/gram °C= 7560J
The unknown substance is added to the water, so its final temperature should be the same as the water. The calculation would be:
7560J= 124g * (100-26)* specific heat
specific heat= 7560J / 124g / 74 °C= 0.8238 J/gram °C
<span>B)<span>C2H6O<span>2
</span></span></span>
First, convert each percentage to grams: 38.7g, 9.70g, and 51.6g.
Next, calculate the number of moles of each element, based on the number of grams given.
C = 3.23 mol
H = 8.91 mol
O = 3.23 mol
Set up the ratio of moles of each element:
C3.34H9.70O3.23. Convert the decimals to whole numbers by dividing by the smallest subscript, 3.23.
The empirical formula is CH3O.
Now, compute the formula mass, which is 31. Finally, divide the molecular mass by the formula mass, 62/31 = 2. Multiple the subscripts by 2 to get the molecular formula.
Mixtures of sand and water or sand and iron filings, a conglomerate rock, water and oil, a portion salad, trail mix, and concrete (not cement).