Answer:
Oxide of M is
and sulfate of 
Explanation:
0.303 L of molecular hydrogen gas measured at 17°C and 741 mmHg.
Let moles of hydrogen gas be n.
Temperature of the gas ,T= 17°C =290 K
Pressure of the gas ,P= 741 mmHg= 0.9633 atm
Volume occupied by gas , V = 0.303 L
Using an ideal gas equation:


Moles of hydrogen gas produced = 0.01225 mol

Moles of metal =
So, 8.3333 mol of metal M gives 0.01225 mol of hydrogen gas.

x = 2.9 ≈ 3


Formulas for the oxide and sulfate of M will be:
Oxide of M is
and sulfate of
.
The formula for kinetic energy is KE=1/2(mv²). Since both mass and velocity are multiplied by each other, particle with a larger mass needs to be moving slower than a particle with less mass if both have the same kinetic energy. You can think of it as 2KE/m=v² or 2KE/v²=m, If you increase the mass the velocity needs to decrease to keep the same KE value.
I hope this helps. Let me know in the comments if anything is unclear.
You can use a graduated cylinder.
Solubility data of a certain solute with a certain solvent is empirical. There are constant values for this at varying temperatures. For KCl in water at 25°C, the solubility is 35.7 g/100 mL of water. When you compare this with the solubility data of KCl with ethanol, this means that KCl is more soluble in water than in ethanol. This is true because KCl is an ionic salt which is very soluble in water.
Answer:
The web page of a university
Explanation:
A scientist can be more biased within coming to information about pretty much anything. I have had multiple science teachers who seem more biased on to something else and pretend that they're right just cause they know what they are doing.
Then the university would be a great choice because its controlled by a higher state, then also the consistency of being updated.